Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(5): e1012107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713735

RESUMO

The emergence of multicellularity is one of the major transitions in evolution that happened multiple times independently. During aggregative multicellularity, genetically potentially unrelated lineages cooperate to form transient multicellular groups. Unlike clonal multicellularity, aggregative multicellular organisms do not rely on kin selection instead other mechanisms maintain cooperation against cheater phenotypes that benefit from cooperators but do not contribute to groups. Spatiality with limited diffusion can facilitate group selection, as interactions among individuals are restricted to local neighbourhoods only. Selection for larger size (e.g. avoiding predation) may facilitate the emergence of aggregation, though it is unknown, whether and how much role such selection played during the evolution of aggregative multicellularity. We have investigated the effect of spatiality and the necessity of predation on the stability of aggregative multicellularity via individual-based modelling on the ecological timescale. We have examined whether aggregation facilitates the survival of cooperators in a temporally heterogeneous environment against cheaters, where only a subset of the population is allowed to periodically colonize a new, resource-rich habitat. Cooperators constitutively produce adhesive molecules to promote aggregation and propagule-formation while cheaters spare this expense to grow faster but cannot aggregate on their own, hence depending on cooperators for long-term survival. We have compared different population-level reproduction modes with and without individual selection (predation) to evaluate the different hypotheses. In a temporally homogeneous environment without propagule-based colonization, cheaters always win. Predation can benefit cooperators, but it is not enough to maintain the necessary cooperator amount in successive dispersals, either randomly or by fragmentation. Aggregation-based propagation however can ensure the adequate ratio of cooperators-to-cheaters in the propagule and is sufficient to do so even without predation. Spatiality combined with temporal heterogeneity helps cooperators via group selection, thus facilitating aggregative multicellularity. External stress selecting for larger size (e.g. predation) may facilitate aggregation, however, according to our results, it is neither necessary nor sufficient for aggregative multicellularity to be maintained when there is effective group-selection.


Assuntos
Evolução Biológica , Modelos Biológicos , Biologia Computacional , Ecossistema , Animais , Comportamento Predatório/fisiologia , Seleção Genética , Simulação por Computador
2.
BMC Biol ; 22(1): 73, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561772

RESUMO

BACKGROUND: Quorum sensing (QS) is the ability of microorganisms to assess local clonal density by measuring the extracellular concentration of signal molecules that they produce and excrete. QS is also the only known way of bacterial communication that supports the coordination of within-clone cooperative actions requiring a certain threshold density of cooperating cells. Cooperation aided by QS communication is sensitive to cheating in two different ways: laggards may benefit from not investing in cooperation but enjoying the benefit provided by their cooperating neighbors, whereas Liars explicitly promise cooperation but fail to do so, thereby convincing potential cooperating neighbors to help them, for almost free. Given this double vulnerability to cheats, it is not trivial why QS-supported cooperation is so widespread among prokaryotes. RESULTS: We investigated the evolutionary dynamics of QS in populations of cooperators for whom the QS signal is an inevitable side effect of producing the public good itself (cue-based QS). Using spatially explicit agent-based lattice simulations of QS-aided threshold cooperation (whereby cooperation is effective only above a critical cumulative level of contributions) and three different (analytical and numerical) approximations of the lattice model, we explored the dynamics of QS-aided threshold cooperation under a feasible range of parameter values. We demonstrate three major advantages of cue-driven cooperation. First, laggards cannot wipe out cooperation under a wide range of reasonable environmental conditions, in spite of an unconstrained possibility to mutate to cheating; in fact, cooperators may even exclude laggards at high cooperation thresholds. Second, lying almost never pays off, if the signal is an inevitable byproduct (i.e., the cue) of cooperation; even very cheap fake signals are selected against. And thirdly, QS is most useful if local cooperator densities are the least predictable, i.e., if their lattice-wise mean is close to the cooperation threshold with a substantial variance. CONCLUSIONS: Comparing the results of the four different modeling approaches indicates that cue-driven threshold cooperation may be a viable evolutionary strategy for microbes that cannot keep track of past behavior of their potential cooperating partners, in spatially viscous and in well-mixed environments alike. Our model can be seen as a version of the famous greenbeard effect, where greenbeards coexist with defectors in a evolutionarily stable polymorphism. Such polymorphism is maintained by the condition-dependent trade-offs of signal production which are characteristic of cue-based QS.


Assuntos
Sinais (Psicologia) , Percepção de Quorum , Evolução Biológica , Bactérias , Hidrolases , Comunicação
3.
BMC Biol ; 21(1): 4, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36617556

RESUMO

BACKGROUND: Signal reliability poses a central problem for explaining the evolution of communication. According to Zahavi's Handicap Principle, signals are honest only if they are costly at the evolutionary equilibrium; otherwise, deception becomes common and communication breaks down. Theoretical signalling games have proved to be useful for understanding the logic of signalling interactions. Theoretical evaluations of the Handicap Principle are difficult, however, because finding the equilibrium cost function in such signalling games is notoriously complicated. Here, we provide a general solution to this problem and show how cost functions can be calculated for any arbitrary, pairwise asymmetric signalling game at the evolutionary equilibrium. RESULTS: Our model clarifies the relationship between signalling costs at equilibrium and the conditions for reliable signalling. It shows that these two terms are independent in both additive and multiplicative models, and that the cost of signalling at honest equilibrium has no effect on the stability of communication. Moreover, it demonstrates that honest signals at the equilibrium can have any cost value, even negative, being beneficial for the signaller independently of the receiver's response at equilibrium and without requiring further constraints. Our results are general and we show how they apply to seminal signalling models, including Grafen's model of sexual selection and Godfray's model of parent-offspring communication. CONCLUSIONS: Our results refute the claim that signals must be costly at the evolutionary equilibrium to be reliable, as predicted by the Handicap Principle and so-called 'costly signalling' theory. Thus, our results raise serious concerns about the handicap paradigm. We argue that the evolution of reliable signalling is better understood within a Darwinian life-history framework, and that the conditions for honest signalling are more clearly stated and understood by evaluating their trade-offs rather than their costs per se. We discuss potential shortcomings of equilibrium models and we provide testable predictions to help advance the field and establish a better explanation for honest signals. Last but not least, our results highlight why signals are expected to be efficient rather than wasteful.


Assuntos
Comunicação , Teoria dos Jogos , Animais , Reprodutibilidade dos Testes , Comunicação Animal , Transdução de Sinais , Evolução Biológica
4.
Nat Ecol Evol ; 6(9): 1254-1255, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35915151
5.
Cell Mol Life Sci ; 77(18): 3503-3523, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32008087

RESUMO

Endosymbiosis and organellogenesis are virtually unknown among prokaryotes. The single presumed example is the endosymbiogenetic origin of mitochondria, which is hidden behind the event horizon of the last eukaryotic common ancestor. While eukaryotes are monophyletic, it is unlikely that during billions of years, there were no other prokaryote-prokaryote endosymbioses as symbiosis is extremely common among prokaryotes, e.g., in biofilms. Therefore, it is even more precarious to draw conclusions about potentially existing (or once existing) prokaryotic endosymbioses based on a single example. It is yet unknown if the bacterial endosymbiont was captured by a prokaryote or by a (proto-)eukaryote, and if the process of internalization was parasitic infection, slow engulfment, or phagocytosis. In this review, we accordingly explore multiple mechanisms and processes that could drive the evolution of unicellular microbial symbioses with a special attention to prokaryote-prokaryote interactions and to the mitochondrion, possibly the single prokaryotic endosymbiosis that turned out to be a major evolutionary transition. We investigate the ecology and evolutionary stability of inter-species microbial interactions based on dependence, physical proximity, cost-benefit budget, and the types of benefits, investments, and controls. We identify challenges that had to be conquered for the mitochondrial host to establish a stable eukaryotic lineage. Any assumption about the initial interaction of the mitochondrial ancestor and its contemporary host based solely on their modern relationship is rather perilous. As a result, we warn against assuming an initial mutually beneficial interaction based on modern mitochondria-host cooperation. This assumption is twice fallacious: (i) endosymbioses are known to evolve from exploitative interactions and (ii) cooperativity does not necessarily lead to stable mutualism. We point out that the lack of evidence so far on the evolution of endosymbiosis from mutual syntrophy supports the idea that mitochondria emerged from an exploitative (parasitic or phagotrophic) interaction rather than from syntrophy.


Assuntos
Mitocôndrias/metabolismo , Células Procarióticas/metabolismo , Simbiose , Evolução Biológica , Células Eucarióticas/metabolismo , Consórcios Microbianos , Translocases Mitocondriais de ADP e ATP/metabolismo , Plastídeos
6.
R Soc Open Sci ; 6(8): 190202, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31598234

RESUMO

Complexity of life forms on the Earth has increased tremendously, primarily driven by subsequent evolutionary transitions in individuality, a mechanism in which units formerly being capable of independent replication combine to form higher-level evolutionary units. Although this process has been likened to the recursive combination of pre-adapted sub-solutions in the framework of learning theory, no general mathematical formalization of this analogy has been provided yet. Here we show, building on former results connecting replicator dynamics and Bayesian update, that (i) evolution of a hierarchical population under multilevel selection is equivalent to Bayesian inference in hierarchical Bayesian models and (ii) evolutionary transitions in individuality, driven by synergistic fitness interactions, is equivalent to learning the structure of hierarchical models via Bayesian model comparison. These correspondences support a learning theory-oriented narrative of evolutionary complexification: the complexity and depth of the hierarchical structure of individuality mirror the amount and complexity of data that have been integrated about the environment through the course of evolutionary history.

7.
PLoS One ; 14(1): e0208443, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30633748

RESUMO

The "cost of begging" is a prominent prediction of costly signalling theory, suggesting that offspring begging has to be costly in order to be honest. Seminal signalling models predict that there is a unique equilibrium cost function for the offspring that results in honest signalling and this cost function must be proportional to parent's fitness loss. This prediction is only valid if signal cost and offspring condition is assumed to be independent. Here we generalize these models by allowing signal cost to depend on offspring condition. We demonstrate in the generalized model that any signal cost proportional to the fitness gain of the offspring also results in honest signalling. Moreover, we show that any linear combination of the two cost functions (one proportional to parent's fitness loss, as in previous models, the other to offspring's fitness gain) also leads to honest signalling in equilibrium, yielding infinitely many solutions. Furthermore, we demonstrate that there exist linear combinations such that the equilibrium cost of signals is negative and the signal is honest. Our results show that costly signalling theory cannot predict a unique equilibrium cost in signalling games of parent-offspring conflicts if signal cost depends on offspring condition. It follows, contrary to previous claims, that the existence of parent-offspring conflict does not imply costly equilibrium signals. As an important consequence, it is meaningless to measure the "cost of begging" as long as the dependence of signal cost on offspring condition is unknown. Any measured equilibrium cost in case of condition-dependent signal cost has to be compared both to the parent's fitness loss and to the offspring's fitness gain in order to provide meaningful interpretation.


Assuntos
Comunicação Animal , Modelos Teóricos , Animais
8.
J Theor Biol ; 462: 304-310, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30471297

RESUMO

Sexual reproduction is widespread in nature despite the different kinds of cost that it entails. We do not know exactly when the first sexual process took place and especially why it was beneficial at first. It is clearer why sex is advantageous for the prokaryotes and eukaryotes but the benefit of sex for protocells with individually replicating ribozymes is not yet fully understood. In this context sex is the simple horizontal gene transfer among two protocells that undergo transient fusion. Many authors argue that horizontal gene transfer (HGT) was very common in the early stage of evolution. However, HGT is a risky mechanism considering both the disruption of optimal compositions and the spread of parasites among protocells. In order to test the effects of HGT on the fitness of a protocell population, we explored by numerical simulations those conditions under which fusion might have been beneficial. We investigated multiple conceivable types of fusion in the stochastic corrector model framework and we considered the spread of parasites in every case. Protocells contain up to five species of unlinked, essential ribozymes; if a protocell has the same amount of each, it reaches maximum fitness. Fusion is dangerous not only due to the spread of parasites but also because it can ruin the cells with balanced ribozyme composition. We show that fusion can restore the ribozyme composition of the protocells under certain circumstances (high gene count, intermediate split size and low rate of fusion) and thus it can decrease the effect of the genetic load. Fusion could have been a useful early mechanism in contributing to the reliable coexistence of the different ribozymes before the spread of the chromosomes.


Assuntos
Células Artificiais/citologia , Transferência Genética Horizontal , Células Artificiais/parasitologia , Fusão Celular , RNA Catalítico
10.
Proc Natl Acad Sci U S A ; 115(7): E1504-E1510, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382768

RESUMO

The origin of mitochondria was a major evolutionary transition leading to eukaryotes, and is a hotly debated issue. It is unknown whether mitochondria were acquired early or late, and whether it was captured via phagocytosis or syntrophic integration. We present dynamical models to directly simulate the emergence of mitochondria in an ecoevolutionary context. Our results show that regulated farming of prey bacteria and delayed digestion can facilitate the establishment of stable endosymbiosis if prey-rich and prey-poor periods alternate. Stable endosymbiosis emerges without assuming any initial metabolic benefit provided by the engulfed partner, in a wide range of parameters, despite that during good periods farming is costly. Our approach lends support to the appearance of mitochondria before any metabolic coupling has emerged, but after the evolution of primitive phagocytosis by the urkaryote.


Assuntos
Evolução Biológica , Eritrócitos/microbiologia , Mitocôndrias/fisiologia , Modelos Biológicos , Seleção Genética , Simbiose/fisiologia , Animais , Bactérias/patogenicidade , Biologia Computacional , Eucariotos , Humanos , Comportamento Predatório
11.
Life (Basel) ; 7(4)2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29186916

RESUMO

As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string) replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1) it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2) it must be ecologically stable and (3) it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system) are promising candidates for development into coherent models that may become experimentally accessible in the future.

12.
Biol Direct ; 12(1): 19, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806979

RESUMO

The origin of mitochondria is a unique and hard evolutionary problem, embedded within the origin of eukaryotes. The puzzle is challenging due to the egalitarian nature of the transition where lower-level units took over energy metabolism. Contending theories widely disagree on ancestral partners, initial conditions and unfolding of events. There are many open questions but there is no comparative examination of hypotheses. We have specified twelve questions about the observable facts and hidden processes leading to the establishment of the endosymbiont that a valid hypothesis must address. We have objectively compared contending hypotheses under these questions to find the most plausible course of events and to draw insight on missing pieces of the puzzle. Since endosymbiosis borders evolution and ecology, and since a realistic theory has to comply with both domains' constraints, the conclusion is that the most important aspect to clarify is the initial ecological relationship of partners. Metabolic benefits are largely irrelevant at this initial phase, where ecological costs could be more disruptive. There is no single theory capable of answering all questions indicating a severe lack of ecological considerations. A new theory, compliant with recent phylogenomic results, should adhere to these criteria. REVIEWERS: This article was reviewed by Michael W. Gray, William F. Martin and Purificación López-García.


Assuntos
Evolução Biológica , Mitocôndrias , Modelos Biológicos , Metabolismo Energético , Genoma Mitocondrial , Fagocitose , Filogenia
13.
Front Psychol ; 8: 427, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405191

RESUMO

In this paper, we show that a neurally implemented a cognitive architecture with evolutionary dynamics can solve the four-tree problem. Our model, called Darwinian Neurodynamics, assumes that the unconscious mechanism of problem solving during insight tasks is a Darwinian process. It is based on the evolution of patterns that represent candidate solutions to a problem, and are stored and reproduced by a population of attractor networks. In our first experiment, we used human data as a benchmark and showed that the model behaves comparably to humans: it shows an improvement in performance if it is pretrained and primed appropriately, just like human participants in Kershaw et al. (2013)'s experiment. In the second experiment, we further investigated the effects of pretraining and priming in a two-by-two design and found a beginner's luck type of effect: solution rate was highest in the condition that was primed, but not pretrained with patterns relevant for the task. In the third experiment, we showed that deficits in computational capacity and learning abilities decreased the performance of the model, as expected. We conclude that Darwinian Neurodynamics is a promising model of human problem solving that deserves further investigation.

14.
F1000Res ; 5: 2416, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990266

RESUMO

Background: The fact that surplus connections and neurons are pruned during development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. Methods: We combine known components of the brain - recurrent neural networks (acting as attractors), the action selection loop and implicit working memory - to provide the appropriate Darwinian architecture. We employ a population of attractor networks with palimpsest memory. The action selection loop is employed with winners-share-all dynamics to select for candidate solutions that are transiently stored in implicit working memory. Results: We document two processes: selection of stored solutions and evolutionary search for novel solutions. During the replication of candidate solutions attractor networks occasionally produce recombinant patterns, increasing variation on which selection can act. Combinatorial search acts on multiplying units (activity patterns) with hereditary variation and novel variants appear due to (i) noisy recall of patterns from the attractor networks, (ii) noise during transmission of candidate solutions as messages between networks, and, (iii) spontaneously generated, untrained patterns in spurious attractors. Conclusions: Attractor dynamics of recurrent neural networks can be used to model Darwinian search. The proposed architecture can be used for fast search among stored solutions (by selection) and for evolutionary search when novel candidate solutions are generated in successive iterations. Since all the suggested components are present in advanced nervous systems, we hypothesize that the brain could implement a truly evolutionary combinatorial search system, capable of generating novel variants.

15.
J Theor Biol ; 381: 29-38, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26165453

RESUMO

While it is generally agreed that some kind of replicating non-living compounds were the precursors of life, there is much debate over their possible chemical nature. Metabolism-first approaches propose that mutually catalytic sets of simple organic molecules could be capable of self-replication and rudimentary chemical evolution. In particular, the graded autocatalysis replication domain (GARD) model, depicting assemblies of amphiphilic molecules, has received considerable interest. The system propagates compositional information across generations and is suggested to be a target of natural selection. However, evolutionary simulations indicate that the system lacks selectability (i.e. selection has negligible effect on the equilibrium concentrations). We elaborate on the lessons learnt from the example of the GARD model and, more widely, on the issue of evolvability, and discuss the implications for similar metabolism-first scenarios. We found that simple incorporation-type chemistry based on non-covalent bonds, as assumed in GARD, is unlikely to result in alternative autocatalytic cycles when catalytic interactions are randomly distributed. An even more serious problem stems from the lognormal distribution of catalytic factors, causing inherent kinetic instability of such loops, due to the dominance of efficiently catalyzed components that fail to return catalytic aid. Accordingly, the dynamics of the GARD model is dominated by strongly catalytic, but not auto-catalytic, molecules. Without effective autocatalysis, stable hereditary propagation is not possible. Many repetitions and different scaling of the model come to no rescue. Despite all attempts to show the contrary, the GARD model is not evolvable, in contrast to reflexively autocatalytic networks, complemented by rare uncatalyzed reactions and compartmentation. The latter networks, resting on the creation and breakage of chemical bonds, can generate novel ('mutant') autocatalytic loops from a given set of environmentally available compounds. Real chemical reactions that make or break covalent bonds, rather than mere incorporation of components, are necessary for open-ended evolvability. The issue of whether or not several concrete chemical systems (rather than singular curiosities) could realize reflexively autocatalytic macromolecular networks will ultimately determine the relevance of metabolism-first approaches to the origin of life, as stepping stones towards true open-endedness that requires the combination of rich combinatorial chemistry controlled by information stored in template replicators.


Assuntos
Evolução Química , Modelos Biológicos , Origem da Vida , Animais , Biocatálise
16.
Ann N Y Acad Sci ; 1341: 75-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25735569

RESUMO

The RNA world hypothesis of the origin of life, in which RNA emerged as both enzyme and information carrier, is receiving solid experimental support. The prebiotic synthesis of biomolecules, the catalytic aid offered by mineral surfaces, and the vast enzymatic repertoire of ribozymes are only pieces of the origin of life puzzle; the full picture can only emerge if the pieces fit together by either following from one another or coexisting with each other. Here, we review the theory of the origin, maintenance, and enhancement of the RNA world as an evolving population of dynamical systems. The dynamical view of the origin of life allows us to pinpoint the missing and the not fitting pieces: (1) How can the first self-replicating ribozyme emerge in the absence of template-directed information replication? (2) How can nucleotide replicators avoid competitive exclusion despite utilizing the very same resources (nucleobases)? (3) How can the information catastrophe be avoided? (4) How can enough genes integrate into a cohesive system in order to transition to a cellular stage? (5) How can the way information is stored and metabolic complexity coevolve to pave to road leading out of the RNA world to the present protein-DNA world?


Assuntos
Nucleotídeos/genética , Origem da Vida , RNA Catalítico/genética , RNA Polimerase Dependente de RNA/genética , Biocatálise , Cromossomos/genética , Cromossomos/metabolismo , Evolução Molecular , Modelos Genéticos , Nucleotídeos/metabolismo , RNA Catalítico/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Moldes Genéticos
17.
PLoS Comput Biol ; 9(8): e1003193, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990769

RESUMO

Models of competitive template replication, although basic for replicator dynamics and primordial evolution, have not yet taken different sequences explicitly into account, neither have they analyzed the effect of resource partitioning (feeding on different resources) on coexistence. Here we show by analytical and numerical calculations that Gause's principle of competitive exclusion holds for template replicators if resources (nucleotides) affect growth linearly and coexistence is at fixed point attractors. Cases of complementary or homologous pairing between building blocks with parallel or antiparallel strands show no deviation from the rule that the nucleotide compositions of stably coexisting species must be different and there cannot be more coexisting replicator species than nucleotide types. Besides this overlooked mechanism of template coexistence we show also that interesting sequence effects prevail as parts of sequences that are copied earlier affect coexistence more strongly due to the higher concentration of the corresponding replication intermediates. Template and copy always count as one species due their constraint of strict stoichiometric coupling. Stability of fixed-point coexistence tends to decrease with the length of sequences, although this effect is unlikely to be detrimental for sequences below 100 nucleotides. In sum, resource partitioning (niche differentiation) is the default form of competitive coexistence for replicating templates feeding on a cocktail of different nucleotides, as it may have been the case in the RNA world. Our analysis of different pairing and strand orientation schemes is relevant for artificial and potentially astrobiological genetics.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica , Modelos Genéticos , RNA Mensageiro/genética , Análise por Conglomerados , Simulação por Computador , Fator de Transcrição GATA2/genética , Fator Estimulador de Colônias de Granulócitos/genética , Interleucina-3/genética , Modelos Estatísticos , Método de Monte Carlo , Proteínas Recombinantes de Fusão/genética , Processos Estocásticos
18.
PLoS One ; 6(7): e21380, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21818258

RESUMO

The simulation of complex biochemical systems, consisting of intertwined subsystems, is a challenging task in computational biology. The complex biochemical organization of the cell is effectively modeled by the minimal cell model called chemoton, proposed by Gánti. Since the chemoton is a system consisting of a large but fixed number of interacting molecular species, it can effectively be implemented in a process algebra-based language such as the BlenX programming language. The stochastic model behaves comparably to previous continuous deterministic models of the chemoton. Additionally to the well-known chemoton, we also implemented an extended version with two competing template cycles. The new insight from our study is that the coupling of reactions in the chemoton ensures that these templates coexist providing an alternative solution to Eigen's paradox. Our technical innovation involves the introduction of a two-state switch to control cell growth and division, thus providing an example for hybrid methods in BlenX. Further developments to the BlenX language are suggested in the Appendix.


Assuntos
Células Artificiais/metabolismo , Simulação por Computador , Modelos Biológicos , Linguagens de Programação , Processos Estocásticos
19.
BMC Biol ; 8: 21, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20219099

RESUMO

BACKGROUND: Replicators are the crucial entities in evolution. The notion of a replicator, however, is far less exact than the weight of its importance. Without identifying and classifying multiplying entities exactly, their dynamics cannot be determined appropriately. Therefore, it is importance to decide the nature and characteristics of any multiplying entity, in a detailed and formal way. RESULTS: Replication is basically an autocatalytic process which enables us to rest on the notions of formal chemistry. This statement has major implications. Simple autocatalytic cycle intermediates are considered as non-informational replicators. A consequence of which is that any autocatalytically multiplying entity is a replicator, be it simple or overly complex (even nests). A stricter definition refers to entities which can inherit acquired changes (informational replicators). Simple autocatalytic molecules (and nests) are excluded from this group. However, in turn, any entity possessing copiable information is to be named a replicator, even multicellular organisms. In order to deal with the situation, an abstract, formal framework is presented, which allows the proper identification of various types of replicators. This sheds light on the old problem of the units and levels of selection and evolution. A hierarchical classification for the partition of the replicator-continuum is provided where specific replicators are nested within more general ones. The classification should be able to be successfully applied to known replicators and also to future candidates. CONCLUSION: This paper redefines the concept of the replicator from a bottom-up theoretical approach. The formal definition and the abstract models presented can distinguish between among all possible replicator types, based on their quantity of variable and heritable information. This allows for the exact identification of various replicator types and their underlying dynamics. The most important claim is that replication, in general, is basically autocatalysis, with a specific defined environment and selective force. A replicator is not valid unless its working environment, and the selective force to which it is subject, is specified.


Assuntos
Modelos Genéticos , Replicação do DNA , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...