Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
J Am Chem Soc ; 146(20): 13783-13796, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38723619

RESUMO

The deposition of islet amyloid polypeptide (hIAPP) fibrils is a hallmark of ß-cell death in type II diabetes. In this study, we employ state-of-the-art MAS solid-state spectroscopy to investigate the previously elusive N-terminal region of hIAPP fibrils, uncovering both rigidity and heterogeneity. Comparative analysis between wild-type hIAPP and a disulfide-deficient variant (hIAPPC2S,C7S) unveils shared fibril core structures yet strikingly distinct dynamics in the N-terminus. Specifically, the variant fibrils exhibit extended ß-strand conformations, facilitating surface nucleation. Moreover, our findings illuminate the pivotal roles of specific residues in modulating secondary nucleation rates. These results deepen our understanding of hIAPP fibril assembly and provide critical insights into the molecular mechanisms underpinning type II diabetes, holding promise for future therapeutic strategies.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Humanos , Amiloide/química , Amiloide/metabolismo , Conformação Proteica
2.
Biochim Biophys Acta Biomembr ; 1866(5): 184333, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740122

RESUMO

Membrane protein folding is distinct from folding of soluble proteins. Conformational acquisition in major membrane protein subclasses can be delineated into insertion and folding processes. An exception to the "two stage" folding, later developed to "three stage" folding, is observed within the last two helices in bacteriorhodopsin (BR), a system that serves as a model membrane protein. We employ a reductionist approach to understand interplay of molecular factors underlying the apparent defiance. Leveraging available solution NMR structures, we construct, sample in silico, and analyze partially (PIn) and fully inserted (FIn) BR membrane states. The membrane lateral C-terminal helix (CH) in PIn is markedly prone to transient structural distortions over microsecond timescales; a disorder prone region (DPR) is thereby identified. While clear transmembrane propensities are not acquired, the distortions induce alterations in local membrane curvature and area per lipid. Importantly, energetic decompositions reveal that overall, the N-terminal helix (NH) is thermodynamically more stable in the PIn. Higher overall stability of the FIn arises from favorable interactions between the NH and the CH. Our results establish lack of spontaneous transition of the PIn to the FIn, and attributes their partitioning to barriers that exceed those accessible with thermal fluctuations. This work paves the way for further detailed studies aimed at determining the thermo-kinetic roles of the initial five helices, or complementary external factors, in complete helical folding and insertion in BR. We comment that complementing such efforts with the growing field of machine learning assisted energy landscape searches may offer unprecedented insights.

3.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604811

RESUMO

BACKGROUND: The use and approval of immune checkpoint inhibitors for the treatment of non-small cell lung cancer (NSCLC) depends on PD-L1 expression in the tumor tissue. Nevertheless, PD-L1 often fails to predict response to treatment. One possible explanation could be a change in PD-L1 expression during the course of the disease and the neglect of reassessment. The purpose of this study was a longitudinal analysis of PD-L1 expression in patients with relapsed NSCLC. METHODS: We retrospectively analyzed PD-L1 expression in patients with early-stage NSCLC and subsequent relapse in preoperative samples, matched surgical specimens and biopsy samples of disease recurrence. Ventana PD-L1 (SP263) immunohistochemistry assay was used for all samples. PD-L1 expression was scored based on clinically relevant groups (0%, 1%-49%, and ≥50%). The primary endpoint was the change in PD-L1 score group between preoperative samples, matched surgical specimens and relapsed tumor tissue. RESULTS: 395 consecutive patients with stages I-III NSCLC and 136 (34%) patients with a subsequent relapse were identified. For 87 patients at least two specimens for comparison of PD-L1 expression between early stage and relapsed disease were available. In 72 cases, a longitudinal analysis between preoperative biopsy, the surgically resected specimen and biopsy of disease recurrence was feasible. When comparing preoperative and matched surgical specimens, a treatment-relevant conversion of PD-L1 expression group was found in 25 patients (34.7%). Neoadjuvant treatment showed no significant effect on PD-L1 alteration (p=0.39). In 32 (36.8%) out of 87 cases, a change in PD-L1 group was observed when biopsies of disease relapse were compared with early-stage disease. Adjuvant treatment was not significantly associated with a change in PD-L1 expression (p=0.53). 39 patients (54.2%) showed at least 1 change into a different PD-L1 score group during the course of disease. 14 patients (19.4%) changed the PD-L1 score group twice, 5 (6.9%) of them being found in all different score groups. CONCLUSION: PD-L1 expression shows dynamic changes during the course of disease. There is an urgent need for consensus guidelines to define a PD-L1 testing strategy including time points of reassessment, the number of biopsies to be obtained and judgment of surgical specimens.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Antígeno B7-H1/metabolismo , Estudos Retrospectivos , Recidiva Local de Neoplasia , Recidiva
4.
J Chem Inf Model ; 64(8): 3465-3476, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38602938

RESUMO

Many biological functions are mediated by large complexes formed by multiple proteins and other cellular macromolecules. Recent progress in experimental structure determination, as well as in integrative modeling and protein structure prediction using deep learning approaches, has resulted in a rapid increase in the number of solved multiprotein assemblies. However, the assembly process of large complexes from their components is much less well-studied. We introduce a rapid computational structure-based (SB) model, GoCa, that allows to follow the assembly process of large multiprotein complexes based on a known native structure. Beyond existing SB Go̅-type models, it distinguishes between intra- and intersubunit interactions, allowing us to include coupled folding and binding. It accounts automatically for the permutation of identical subunits in a complex and allows the definition of multiple minima (native) structures in the case of proteins that undergo global transitions during assembly. The model is successfully tested on several multiprotein complexes. The source code of the GoCa program including a tutorial is publicly available on Github: https://github.com/ZachariasLab/GoCa. We also provide a web source that allows users to quickly generate the necessary input files for a GoCa simulation: https://goca.t38webservices.nat.tum.de.


Assuntos
Conformação Proteica , Proteínas , Proteínas/química , Proteínas/metabolismo , Sítios de Ligação , Modelos Moleculares , Software , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo
5.
Nat Chem Biol ; 20(5): 549-550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580838
6.
J Chem Theory Comput ; 20(6): 2643-2654, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465868

RESUMO

It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis-trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal ß-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol-1, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints.


Assuntos
Bradicinina , Prolina , Conformação Proteica , Prolina/química , Termodinâmica , Proteínas
7.
J Phys Chem B ; 128(10): 2457-2468, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38427971

RESUMO

Molecular dynamics (MD) simulations are widely used to investigate molecular systems at atomic resolution including biomolecular structures, drug-receptor interactions, and novel materials. Frequently, MD simulations are performed in an aqueous solution with explicit models of water molecules. Commonly, such models are parameterized to reproduce the liquid phase of water under ambient conditions. However, often, simulations at significantly higher temperatures are also of interest. Hence, it is important to investigate the equilibrium of the liquid and vapor phases of molecular models of water at elevated temperatures. Here, we evaluate the behavior of 11 common rigid three-point water models over a wide range of temperatures. From liquid-vapor coexistence simulations, we estimated the critical points and studied the spontaneous evaporation of these water models. Moreover, we investigated the influence of the system size, choice of the pressure-coupling algorithm, and rate of heating on the process and compared them with the experimental data. We found that modern rigid three-point water models reproduce the critical point surprisingly well. Furthermore, we discovered that the critical temperature correlates with the quadrupole moment of the respective water model. This indicates that the spatial arrangement of the partial charges is important for reproducing the liquid-vapor phase transition. Our findings may guide the selection of water models for simulations conducted at high temperatures.

8.
Proteins ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481374

RESUMO

Self-assembled aggregation of peptides and proteins into regular amyloid fibrils is associated with several neurodegenerative diseases. In case of Alzheimer's disease proteolytic cleavage products of the amyloid precursor protein form pathological amyloid-beta fibrils in a nucleation and propagation phase. The molecular details and thermodynamic driving forces of amyloid formation are not well understood, but are of high relevance for potential pharmacological interference. We used atomistic binding free energy simulations to calculate the free energy of protofilament propagation by an additional Aß9-40 peptide binding to the protofilament tip. It requires sampling of relevant conformational transitions which is challenging since the monomeric Aß9-40 peptide is intrinsically disordered. However, the convergence of umbrella simulations can be enhanced by applying additional restraining potentials on the axial, orientational and conformational degrees of freedom. The improved convergence leads to a much closer agreement with experimental binding free energy data compared to unrestrained umbrella sampling. Moreover, the restraining approach results in a separation of contributions to the total binding free energy. The calculated contributions indicate that the free energy change associated with the restriction of conformational freedom upon propagation makes a large opposing contribution of higher magnitude than the total binding free energy. Finally, optimization of the approach leads to further significant reduction of the computational demand which is crucial for systematic studies on mutations, denaturants and inhibitors in the fibril propagation step.

9.
Cancers (Basel) ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473263

RESUMO

Due to the success story of biomarker-driven targeted therapy, most NSCLC guidelines agree that molecular reflex testing should be performed in all cases with non-squamous cell carcinoma (non-SCC). In contrast, testing recommendations for squamous cell carcinoma (SCC) vary considerably, specifically concerning the exclusion of patients of certain age or smoking status from molecular testing strategies. We performed a retrospective single-center study examining the value of molecular reflex testing in an unselected cohort of 316 consecutive lung SCC cases, tested by DNA- and RNA-based next-generation sequencing (NGS) at our academic institution between 2019 and 2023. Clinicopathological data from these cases were obtained from electronic medical records and correlated with sequencing results. In 21/316 (6.6%) cases, we detected an already established molecular target for an approved drug. Among these were seven cases with an EGFR mutation, seven with a KRAS G12C mutation, four with an ALK fusion, two with an EGFR fusion and one with a METex14 skipping event. All patients harboring a targetable alteration were >50 years of age and most of them had >15 pack-years, questioning restrictive molecular testing strategies. Based on our real-world data, we propose a reflex testing workflow using DNA- and RNA-based NGS that includes all newly diagnosed NSCLC cases, irrespective of histology, but also irrespective of age or smoking status.

10.
Nat Chem ; 16(3): 363-372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326645

RESUMO

The human enzyme p97 regulates various cellular pathways by unfolding hundreds of protein substrates in an ATP-dependent manner, making it an essential component of protein homeostasis and an impactful pharmacological target. The hexameric complex undergoes substantial conformational changes throughout its catalytic cycle. Here we elucidate the molecular motions that occur at the active site in the temporal window immediately before and after ATP hydrolysis by merging cryo-EM, NMR spectroscopy and molecular dynamics simulations. p97 populates a metastable reaction intermediate, the ADP·Pi state, which is poised between hydrolysis and product release. Detailed snapshots reveal that the active site is finely tuned to trap and eventually discharge the cleaved phosphate. Signalling pathways originating at the active site coordinate the action of the hexamer subunits and couple hydrolysis with allosteric conformational changes. Our multidisciplinary approach enables a glimpse into the sophisticated spatial and temporal orchestration of ATP handling by a prototype AAA+ protein.


Assuntos
Adenosina Trifosfatases , Trifosfato de Adenosina , Humanos , Trifosfato de Adenosina/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteína com Valosina , Simulação de Dinâmica Molecular
11.
J Chem Theory Comput ; 20(5): 2321-2333, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38373307

RESUMO

Protein folding is a fascinating, not fully understood phenomenon in biology. Molecular dynamics (MD) simulations are an invaluable tool to study conformational changes in atomistic detail, including folding and unfolding processes of proteins. However, the accuracy of the conformational ensembles derived from MD simulations inevitably relies on the quality of the underlying force field in combination with the respective water model. Here, we investigate protein folding, unfolding, and misfolding of fast-folding proteins by examining different force fields with their recommended water models, i.e., ff14SB with the TIP3P model and ff19SB with the OPC model. To this end, we generated long conventional MD simulations highlighting the perks and pitfalls of these setups. Using Markov state models, we defined kinetically independent conformational substates and emphasized their distinct characteristics, as well as their corresponding state probabilities. Surprisingly, we found substantial differences in thermodynamics and kinetics of protein folding, depending on the combination of the protein force field and water model, originating primarily from the different water models. These results emphasize the importance of carefully choosing the force field and the respective water model as they determine the accuracy of the observed dynamics of folding events. Thus, the findings support the hypothesis that the water model is at least equally important as the force field and hence needs to be considered in future studies investigating protein dynamics and folding in all areas of biophysics.


Assuntos
Dobramento de Proteína , Água , Proteínas , Simulação de Dinâmica Molecular , Conformação Molecular , Termodinâmica , Conformação Proteica , Desdobramento de Proteína
12.
Bioorg Med Chem Lett ; 99: 129599, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185345

RESUMO

Compared to small molecules and antibodies, cyclic peptides exhibit unique biochemical and therapeutic attributes in the realm of pharmaceutical applications. The interaction between the inducible costimulator (ICOS) and its ligand (ICOSL) plays a key role in T-cell differentiation and activation. ICOS/ICOSL inhibition results in a reduction in the promotion of immunosuppressive regulatory T cells (Tregs) in both hematologic malignancies and solid tumors. Herein, we implement the computational cPEPmatch approach to design the first examples of cyclic peptides that inhibit ICOS/ICOSL interaction. The top cyclic peptide from our approach possessed an IC50 value of 1.87 ± 0.15 µM as an ICOS/ICOSL inhibitor and exhibited excellent in vitro pharmacokinetic properties as a drug candidate. Our work will lay the groundwork for future endeavors in cancer drug discovery, with the goal of developing cyclic peptides that target the ICOS/ICOSL interaction.


Assuntos
Antineoplásicos , Linfócitos T Reguladores , Anticorpos , Antineoplásicos/farmacologia , Proteína Coestimuladora de Linfócitos T Induzíveis , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia
13.
Histopathology ; 84(4): 702-706, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38192085

RESUMO

AIMS: Mucormycosis is a fast-progressing disease with a high mortality rate. The most important factor determining survival of patients is early and accurate diagnosis. Although histopathology often recognises invasive mould infections at first, histomorphology alone is insufficient in providing an accurate diagnosis. Unbiased molecular methods to detect and identify fungi are promising, yet their role in complementing routine histopathological workflows has not been studied sufficiently. METHODS AND RESULTS: We performed a retrospective single-centre study examining the clinical value of complementing histopathology with internal transcribed spacer (ITS) sequencing of fungal DNA in the routine diagnosis of mucormycosis. At our academic centre, we identified 14 consecutive mucormycosis cases diagnosed by histopathology and subsequent ITS sequencing. Using histomorphological examination, fungal hyphae could be detected in all cases; however, morphological features were unreliable regarding specifying the taxa. Subsequent ITS sequencing identified a remarkable phylogenetic diversity among Mucorales: the most common species was Rhizopus microsporus (six of 14; 42.9%), followed by Lichtheimia corymbifera (three of 14, 21.4%) and single detections of Rhizopus oryzae, Actinomucor elegans, Mucor circinelloides, Rhizomucor pusillus and Rhizomucor miehei (one of 14; 7.1%, respectively). In one case, we additionally detected Pneumocystis jirovecii in the same lung tissue specimen, suggesting a clinically relevant co-infection. Fungal culture was performed in 10 cases but yielded positive results in only two of 10 (20%), revealing its limited value in the diagnosis of mucormycosis. CONCLUSIONS: Our study demonstrates that a combination of histopathology and ITS sequencing is a practically feasible approach that outperforms fungal culture in detecting Mucorales in tissue-associated infections. Therefore, pathologists might adapt diagnostic workflows accordingly when mucormycosis is suspected.


Assuntos
Mucormicose , Humanos , Mucormicose/diagnóstico , Mucormicose/microbiologia , Mucormicose/patologia , Estudos Retrospectivos , Filogenia
14.
J Med Chem ; 66(24): 16772-16782, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38059872

RESUMO

Inhibition of γ-secretase, an intramembrane protease, to reduce secretion of Amyloid-ß (Aß) peptides has been considered for treating Alzheimer's disease. However, γ-secretase inhibitors suffer from severe side effects. As an alternative, γ-secretase modulators (GSM) reduce the generation of toxic peptides by enhancing the cleavage processivity without diminishing the enzyme activity. Starting from a known γ-secretase structure without substrate but in complex with an E2012 GSM, we generated a structural model that included a bound Aß43 peptide and studied interactions among enzyme, substrate, GSM, and lipids. Our result suggests that E2012 binding at the enzyme-substrate-membrane interface attenuates the membrane distortion by shielding the substrate-membrane interaction. The model predicts that the E2012 modulation is charge-dependent and explains the preserved hydrogen acceptor and the aromatic ring observed in many imidazole-based GSM. Predicted effects of γ-secretase mutations on E2012 modulation were confirmed experimentally. We anticipate that the study will facilitate the future development of effective GSMs.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Mutação , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
15.
J Mol Biol ; 435(23): 168300, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37805067

RESUMO

Interleukin 12 (IL-12) family cytokines connect the innate and adaptive branches of the immune system and regulate immune responses. A unique characteristic of this family is that each member is anα:ßheterodimer. For human αsubunits it has been shown that they depend on theirßsubunit for structure formation and secretion from cells. Since subunits are shared within the family and IL-12 as well as IL-23 use the same ßsubunit, subunit competition may influence cytokine secretion and thus downstream immunological functions. Here, we rationally design a folding-competent human IL-23α subunit that does not depend on itsßsubunit for structure formation. This engineered variant still forms a functional heterodimeric cytokine but shows less chaperone dependency and stronger affinity in assembly with its ßsubunit. It forms IL-23 more efficiently than its natural counterpart, skewing the balance of IL-12 and IL-23 towards more IL-23 formation. Together, our study shows that folding-competent human IL-12 familyαsubunits are obtainable by only few mutations and compatible with assembly and function of the cytokine. These findings might suggest that human α subunits have evolved for assembly-dependent folding to maintain and regulate correct IL-12 family member ratios in the light of subunit competition.


Assuntos
Interleucina-12 , Interleucina-23 , Multimerização Proteica , Humanos , Interleucina-12/química , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-23/química , Interleucina-23/genética , Interleucina-23/metabolismo , Chaperonas Moleculares , Dobramento de Proteína , Mutação , Conformação Proteica , Engenharia de Proteínas , Simulação por Computador
16.
EMBO J ; 42(23): e114372, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853914

RESUMO

Sequential proteolysis of the amyloid precursor protein (APP) by γ-secretases generates amyloid-ß (Aß) peptides and defines the proportion of short-to-long Aß peptides, which is tightly connected to Alzheimer's disease (AD) pathogenesis. Here, we study the mechanism that controls substrate processing by γ-secretases and Aß peptide length. We found that polar interactions established by the APPC99 ectodomain (ECD), involving but not limited to its juxtamembrane region, restrain both the extent and degree of γ-secretases processive cleavage by destabilizing enzyme-substrate interactions. We show that increasing hydrophobicity, via mutation or ligand binding, at APPC99 -ECD attenuates substrate-driven product release and rescues the effects of Alzheimer's disease-associated pathogenic γ-secretase and APP variants on Aß length. In addition, our study reveals that APPC99 -ECD facilitates the paradoxical production of longer Aßs caused by some γ-secretase inhibitors, which act as high-affinity competitors of the substrate. These findings assign a pivotal role to the substrate ECD in the sequential proteolysis by γ-secretases and suggest it as a sweet spot for the potential design of APP-targeting compounds selectively promoting its processing by these enzymes.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Proteólise
17.
mBio ; 14(5): e0108923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37655896

RESUMO

IMPORTANCE: Here, we studied the LytS-type histidine kinase BtsS of E. coli and identified the pyruvate binding site within the membrane-spanning domains. It is a small cavity, and pyruvate forms interactions with the side chains of Arg72, Arg99, Cys110, and Ser113 located in transmembrane helices III, IV, and V, respectively. Our results can serve as a starting point to convert BtsS into a sensor for structurally similar ligands such as lactate, which can be used as biosensor in medicine.


Assuntos
Proteínas de Escherichia coli , Ácido Pirúvico , Ácido Pirúvico/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Domínios Proteicos , Proteínas de Bactérias/metabolismo
18.
Structure ; 31(11): 1473-1484.e6, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37657438

RESUMO

Proline cis/trans isomerization plays an important role in many biological processes but occurs on time scales not accessible to brute-force molecular dynamics (MD) simulations. We have designed a new Hamiltonian replica exchange scheme, ω-bias potential replica exchange molecular dynamics (ωBP-REMD), to efficiently and accurately calculate proline cis/trans isomerization free energies. ωBP-REMD is applied to various proline-containing tripeptides and a biologically important proline residue in the N2-domain of the gene-3-protein of phage fd in the wildtype and mutant variants of the protein. Excellent cis/trans transition rates are obtained. Reweighting of the sampled probability distribution along the peptide bond dihedral angle allows construction of the corresponding free-energy profile and calculation of the cis/trans isomerization free energy with high statistical precision. Very good agreement with experimental data is obtained. ωBP-REMD outperforms standard umbrella sampling in terms of convergence and agreement with experiment and strongly reduces perturbation of the local structure near the proline residue.


Assuntos
Simulação de Dinâmica Molecular , Prolina , Prolina/química , Proteínas , Peptídeos
19.
Biophys Chem ; 300: 107050, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37327725

RESUMO

UV-light can cause photodimerization and hence damages in DNA. Most frequent are cyclobutane pyrimidine dimer (CPD) damages, which predominantly form at TpT (thymine-thymine) steps. It is well known that CPD damage probability is different for single-stranded or double stranded DNA and depends on the sequence context. However, DNA deformation due to packing in nucleosomes can also influence CPD formation. Quantum mechanical calculations and Molecular Dynamics simulations indicate little CPD damage probability for DNA's equilibrium structure. We find that DNA needs to be deformed in a specific way to allow the HOMO → LUMO transition required for CPD damage formation. The simulation studies further show that the periodic CPD damage patterns measured in chromosomes and nucleosomes can be directly explained by the periodic deformation pattern of the DNA in the nucleosome complex. It supports previous findings on characteristic deformation patterns found in experimental nucleosome structures that relate to CPD damage formation. The result may have important implications for our understanding of UV-induced DNA mutations in human cancers.


Assuntos
Nucleossomos , Dímeros de Pirimidina , Humanos , Dímeros de Pirimidina/química , Timina/química , DNA/química , Dano ao DNA , Raios Ultravioleta , Reparo do DNA
20.
Front Immunol ; 14: 1188079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283766

RESUMO

Background: Immune cell recruitment, endothelial cell barrier disruption, and platelet activation are hallmarks of lung injuries caused by COVID-19 or other insults which can result in acute respiratory distress syndrome (ARDS). Basement membrane (BM) disruption is commonly observed in ARDS, however, the role of newly generated bioactive BM fragments is mostly unknown. Here, we investigate the role of endostatin, a fragment of the BM protein collagen XVIIIα1, on ARDS associated cellular functions such as neutrophil recruitment, endothelial cell barrier integrity, and platelet aggregation in vitro. Methods: In our study we analyzed endostatin in plasma and post-mortem lung specimens of patients with COVID-19 and non-COVID-19 ARDS. Functionally, we investigated the effect of endostatin on neutrophil activation and migration, platelet aggregation, and endothelial barrier function in vitro. Additionally, we performed correlation analysis for endostatin and other critical plasma parameters. Results: We observed increased plasma levels of endostatin in our COVID-19 and non-COVID-19 ARDS cohort. Immunohistochemical staining of ARDS lung sections depicted BM disruption, alongside immunoreactivity for endostatin in proximity to immune cells, endothelial cells, and fibrinous clots. Functionally, endostatin enhanced the activity of neutrophils, and platelets, and the thrombin-induced microvascular barrier disruption. Finally, we showed a positive correlation of endostatin with soluble disease markers VE-Cadherin, c-reactive protein (CRP), fibrinogen, and interleukin (IL)-6 in our COVID-19 cohort. Conclusion: The cumulative effects of endostatin on propagating neutrophil chemotaxis, platelet aggregation, and endothelial cell barrier disruption may suggest endostatin as a link between those cellular events in ARDS pathology.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Endostatinas/efeitos adversos , Endostatinas/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , COVID-19/metabolismo , Síndrome do Desconforto Respiratório/patologia , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...