Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 122(35): 6985-6996, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30092643

RESUMO

Single crystals of 4-(diisopropylamino)benzonitrile (DIABN) undergo an intramolecular charge transfer (ICT) reaction in the excited singlet state. At 300 K, the fluorescence consists of emissions from the locally excited (LE) and from the ICT state. Upon cooling to 5 K, the ICT fluorescence intensity gradually decreases relative to that of the LE emission and is absent below 60 K. With crystalline 4-(dimethylamino)benzonitrile (DMABN), in contrast, only LE emission is found over the entire range from 300 to 5 K. The phosphorescence spectra of the DIABN and the DMABN crystals do not present any evidence for an additional ICT emission, showing that ICT does not occur in the triplet state. An activation energy Ea of ∼4 kJ/mol is determined for the LE → ICT reaction of DIABN crystals, from the temperature dependence of the fluorescence decay times τ2 and τ1. Ea is attributed to changes in the molecular conformation of DIABN other than a full rotation of the large diisopropylamino group with respect to the benzonitrile moiety. In a comparison with crystal and solution data, literature results from transient vibrational and absorption spectra are discussed and it is concluded that they cannot be employed to favor the TICT (perpendicular twist) over the PICT (planar) model for DIABN and DMABN.

2.
J Phys Chem A ; 121(6): 1223-1232, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28099017

RESUMO

With 4-fluoro-N,N-dimethylaniline (DMA4F), only a single fluorescence from a locally excited (LE) state is observed, irrespective of solvent polarity, temperature, and excitation wavelength. The relatively small excited state dipole moment µe = 7.3 D confirms the identification as LE. The single exponential fluorescence decays in the nonpolar n-hexane (2.04 ns) and in the strongly polar acetonitrile (5.73 ns) are a further support. Similar results are obtained with 4-chloro-N,N-dimethylaniline (DMA4Cl), having a chlorobenzene subgroup, a somewhat better electron acceptor than the fluorobenzene moiety in DMA4F. The absence of intramolecular charge transfer (ICT) with DMA4F is in accord with its large energy gap ΔE(S1,S2) of 8300 cm-1 in n-hexane between the two lowest singlet excited states, which is even larger than that (6300 cm-1) of N,N-dimethylaniline (DMA), for which an LE → ICT reaction likewise does not occur. The results with DMA4F are in contradiction with a publication by Fujiwara et al. ( Chem. Phys. Lett. 2013 , 586 , 70 ), in which the appearance of dual LE + ICT emission is reported for DMA4F in n-hexane and MeCN at room temperature. The ICT/LE fluorescence quantum yield ratio Φ'(ICT)/Φ(LE) reached a maximum value of ∼2, in n-hexane and surprisingly also in MeCN, as the excitation wavelength approaches the red-edge of the absorption spectrum. These, in our opinion, erroneous observations were supported by time-dependent density functional theory (TDDFT) calculations, which compute a perpendicularly twisted lowest ICT state (TICT) state. This is a further example of the general tendency of computations to find a TICT conformation for the lowest excited singlet state of electron donor/acceptor molecules such as p-substituted anilines.

3.
J Phys Chem A ; 119(49): 11820-36, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26559045

RESUMO

From X-ray structure analysis, amino twist angles of 90.0° for 2,4-dimethyl-3-(dimethylamino)benzonitrile (mMMD), 82.7° for 4-(di-tert-butylamino)benzonitrile (DTABN), and 88.7° for 6-cyanobenzoquinuclidine (CBQ) are determined, all considerably larger than the 57.4° of 3,5-dimethyl-4-(dimethylamino)benzonitrile (MMD). This large twist leads to lengthening of the amino-phenyl bond, 143.5 pm (mMMD), 144.1 pm (DTABN), 144.6 pm (CBQ), and 141.4 pm (MMD), as compared with 136.5 pm for the planar 4-(dimethylamino)benzonitrile (DMABN). As a consequence, the electronic coupling between the amino and phenyl subgroups in mMMD, DTABN, CBQ, and MMD is much weaker than in DMABN, as seen from the strongly reduced molar absorption coefficients. The fluorescence spectrum of MMD in n-hexane at 25 °C consists of two emissions, from a locally excited (LE) and an intramolecular charge transfer (ICT) state, with a fluorescence quantum yield ratio Φ'(ICT)/Φ(LE) of 12.8. In MeCN, a single ICT emission is found. With mMMD in n-hexane, in contrast, only LE fluorescence is observed, whereas the spectrum in MeCN originates from the ICT state. These differences are also seen from the half-widths of the overall fluorescence bands, which in n-hexane are larger for MMD than for mMMD, decreasing with solvent polarity for MMD and increasing for mMMD, reflecting the disappearance of LE and the onset of ICT in the overall spectra, respectively. From solvatochromic measurements the dipole moments µe(ICT) of MMD (16 D) and mMMD (15 D) are obtained. Femtosecond excited state absorption (ESA) spectra at 22 °C, together with the dual (LE + ICT) fluorescence, reveal that MMD in n-hexane undergoes a reversible LE ⇄ ICT reaction, with LE as the precursor, with a forward rate constant ka = 5.6 × 10(12) s(-1) and a back-reaction kd ∼ 0.05 × 10(12) s(-1). With MMD in the strongly polar solvent MeCN, ICT is faster: ka = 10 × 10(12) s(-1). In the case of mMMD in n-hexane, the ESA spectra show that ICT does not take place, contrary to MeCN, in which ka = 2.5 × 10(12) s(-1). The ICT reactions with MMD and mMMD are much faster than that of the parent compound DMABN in MeCN, with ka = 0.24 × 10(12) s(-1). Because of the very short ICT reaction times of 180 fs (MMD, n-hexane), 100 fs (MMD, MeCN), and 400 fs (mMMD, MeCN), it is clear that the picosecond fluorescence decays of these systems appear to be single exponential, due to the insufficient time resolution of 3 ps. It is concluded that the faster LE → ICT reaction of MMD as compared with DMABN (ka = 0.24 × 10(12) s(-1) in MeCN) is caused by a smaller energy gap ΔE(S1,S2) between the lowest singlet excited states and not by the large amino twist angle. Similarly, the larger ΔE(S1,S2) of mMMD as compared with MMD is held responsible for its smaller ICT efficiency (no reaction in n-hexane).


Assuntos
Nitrilas/química , Cristalografia por Raios X , Fluorescência , Isomerismo , Estrutura Molecular , Eletricidade Estática
5.
J Phys Chem A ; 117(33): 7721-36, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23865629

RESUMO

Intramolecular charge transfer (ICT) with crystal violet lactone (CVL) in the excited singlet state takes place in solvents more polar than n-hexane, such as ethyl acetate, tetrahydrofuran, and acetonitrile (MeCN). In these solvents, the fluorescence spectrum of CVL consists of two emission bands, from a locally excited (LE) and an ICT state. The dominant deactivation channel of the lowest excited singlet state is internal conversion, as the quantum yields of fluorescence (0.007) and intersystem crossing (0.015) in MeCN at 25 °C are very small. CVL is a weakly coupled electron donor/acceptor (D/A) molecule, similar to an exciplex (1)(A(-)D(+)). A solvatochromic treatment of the LE and ICT emission maxima results in the dipole moments µe(LE) = 17 D and µe(ICT) = 33 D, much larger than those previously reported. This discrepancy is attributed to different Onsager radii and spectral fluorimeter calibration. The LE and ICT fluorescence decays of CVL in MeCN are double exponential. As determined by global analysis, the LE and ICT decays at 25 °C have the times τ2 = 9.2 ps and τ1 = 1180 ps, with an amplitude ratio of 35.3 for LE. From these parameters, the rate constants ka = 106 × 10(9) s(-1) and kd = 3.0 × 10(9) s(-1) of the forward and backward reaction in the LE ⇄ ICT equilibrium are calculated, resulting in a free enthalpy difference ΔG of -8.9 kJ/mol. The amplitude ratio of the ICT fluorescence decay equals -1.0, which signifies that the ICT state is not prepared by light absorption in the S0 ground state, but originates exclusively from the directly excited LE precursor. From the temperature dependence of the fluorescence decays of CVL in MeCN (-45 to 75 °C), activation energies E(a) = 3.9 kJ/mol (LE → ICT) and E(d) = 23.6 kJ/mol (ICT → LE) are obtained, giving an enthalpy difference ΔH (= E(a) - E(d)) of -19.7 kJ/mol, and an entropy difference ΔS = -35.5 J mol(-1) K(-1). These data show that the ICT reaction of CVL in MeCN is not barrierless. The ICT reaction time of 9.2 ps is much longer than the mean solvent relaxation time of MeCN (0.26 ps), indicating, in contrast with earlier reports in the literature, that the reaction is not solvent controlled. This conclusion is supported by the observation of double exponential LE and ICT fluorescence with the same decay times.

6.
J Phys Chem A ; 115(40): 10823-45, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21800869

RESUMO

The excited state behavior of the six m,n-dicyano-N,N-dimethylanilines (mnDCDMA) and m,n-dicyano-(N-methyl-N-isopropyl)anilines (mnDCMIA) is discussed as a function of solvent polarity and temperature. The dicyano moiety in these electron donor (D)/acceptor (A) molecules has a considerably larger electron affinity than the benzonitrile subgroup in 4-(dimethylamino)benzonitrile (DMABN). Nevertheless, the fluorescence spectra of the mnDCDMAs and mnDCMIAs in n-hexane all consist of a single emission originating from the locally excited (LE) state, indicating that a reaction from LE to an intramolecular charge transfer (ICT) state does not take place. The calculated energies E(ICT), obtained by employing the reduction potential of the dicyanobenzene subgroups and the oxidation potential of the amino substituents trimethylamine (N(Me)(3)) and isopropyldimethylamine (iPrNMe(2)), are lower than E(LE). The absence of an LE → ICT reaction therefore makes clear that the D and A units in the dicyanoanilines are not electronically decoupled. In the polar solvent acetonitrile (MeCN), dual (LE + ICT) fluorescence is found with 24DCDMA and 34DCDMA, as well as with 24DCMIA, 25DCMIA, and 34DCMIA. For all other mnDCDMAs and mnDCMIAs, only LE emission is observed in MeCN. The ICT/LE fluorescence quantum yield ratio Φ'(ICT)/Φ(LE) in MeCN at 25 °C is larger for 24DCDMA (1.2) than for 34DCDMA (0.35). The replacement of methyl by isopropyl in the amino substituent leads to a considerable increase of Φ'(ICT)/Φ(LE), 8.8 for 24DCMIA and 1.4 for 34DCMIA, showing that the LE ⇄ ICT equilibrium has shifted further toward ICT. The appearance of an ICT reaction with the 2,4- and 3,4-dicyanoanilines is caused by a relatively small energy gap ΔE(S(1),S(2)) between the two lowest excited singlet states as compared with the other m,n-dicyanoanilines, in accordance with the PICT model. The observation that the ICT reaction is more efficient for 24DCMIA and 34DCMIA than for their mnDCDMA counterparts is mainly caused by the fact that iPrNMe(2) is a better electron donor than N(Me)(3): E(D/D(+)) = 0.84 against 1.05 V vs SCE. That ICT also occurs with 25DCMIA, notwithstanding its large ΔE(S(1),S(2)), is due to the substantial amino twist angle θ = 42.6°, which leads to partial electronic decoupling of the D and A subgroups. The dipole moments µ(e)(ICT) range between 18 D for 34DCMIA and 12 D for 25DCMIA, larger than the corresponding µ(e)(LE) of 16 and 11 D. The difference between µ(e)(ICT) and µ(e)(LE) is smaller than with DMABN (17 and 10 D) because of the noncollinear arrangement of the amino and cyano substituents (different dipole moment directions). The dicyanoanilines that do not undergo ICT, have LE dipole moments between 9 and 16 D. From plots of ln(Φ'(ICT)/Φ(LE)) vs 1000/T, the (rather small) ICT reaction enthalpies ΔH could be measured in MeCN: 5.4 kJ/mol (24DCDMA), 4.7 kJ/mol (24DCMIA), and 3.9 kJ/mol (34DCMIA). With the mnDCDMAs and mnDCMIAs only showing LE emission, the fluorescence decays are single exponential, whereas for those undergoing an LE → ICT reaction the LE and ICT picosecond fluorescence decays are double exponential. In MeCN at 25 °C, the decay times τ(2) have values between 1.8 ps for 24DCMIA and 4.6 ps for 34DCMIA at 25 °C. Longer times are observed at lower temperatures. Arrhenius plots of the forward and backward ICT rate constants k(a) and k(d) of 25DCMIA in tetrahydrofuran, obtained from the LE and ICT fluorescence decays, give the activation energies E(a) = 4.5 kJ/mol and E(d) = 11.9 kJ/mol, i.e., ΔH = -7.4 kJ/mol. From femtosecond transient absorption spectra of 24DCDMA and 34DCDMA at 22 °C, ICT reaction times τ(2) = 1/(k(a) + k(d)) of 1.8 and 3.1 ps are determined. By combining these results with the data for the fluorescence decays and Φ'(ICT)/Φ(LE), the values k(a) = 49 × 10(10) s(-1) (24DCDMA) and k(a) = 23 × 10(10) s(-1) (34DCDMA) are calculated. An LE and ICT excited state absorption is present even at a pump/probe delay time of 100 ps, showing that an LE ⇄ ICT equilibrium is established.


Assuntos
Compostos de Anilina/química , Teoria Quântica , Acetonitrilas/química , Cristalografia por Raios X , Fluorescência , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Termodinâmica , Fatores de Tempo
7.
J Phys Chem A ; 115(15): 3183-95, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21434671

RESUMO

Intramolecular excimer formation with 1,5-bis(1-pyrenylcarboxy)pentane, (1PC(5)1PC) is studied as a function of temperature in a series of alkane solvents and in toluene, covering a wide range of solvent viscosities η, from 0.2 to 125 cP. The rate constant k(a) of the monomer → excimer reaction is determined from the effectively single exponential monomer fluorescence decays. For the viscosity dependence of k(a) in n-alkanes, the Stokes-Einstein relation k(a) ∼ η(-1.0) does not hold. Instead, k(a) is proportional to η(-α), with α increasing upon cooling, from 0.56 at 85 °C to 0.86 at -30 °C. The activation energy E(a) of excimer formation with 1PC(5)1PC, always larger than the activation energy E(T/η) of solvent viscous flow, decreases when the solvent viscosity becomes smaller, from 20.7 kJ/mol in n-hexadecane to 11.8 kJ/mol in n-butane, approaching a value of 11-12 kJ/mol for the low viscosity solvents. As the excimer formation process depends on the restricted diffusion of the 1PC end groups as well as on the C-O and C-C rotations in the -O(CH(2))(5)O- chain, the limiting barrier of 11-12 kJ/mol is attributed to the activation energy E(c) of the multiple bond rotations. This fractional viscosity dependence (α < 1.0) is caused by the multidimensional character of the barrier crossing in the excimer formation process. This multidimensional character should also be taken into account in investigations of polymers and biological media employing excimer formation.


Assuntos
Alcanos/química , Pirenos/química , Temperatura , Estrutura Molecular , Solventes/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Tolueno/química , Viscosidade
8.
J Phys Chem A ; 115(9): 1521-37, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21314157

RESUMO

6-N,N-Dimethyl-9-methyladenine (DMPURM) and 6-N,N-dimethyladenine (DMPURH) show dual fluorescence from a locally excited (LE) and an intramolecular charge transfer (ICT) state in solvents of different polarity over extended temperature ranges. The fluorescence quantum yields are very small, in particular those of LE. For DMPURM in acetonitrile (MeCN) at 25 °C, for example, Φ'(ICT) = 3.2 × 10(-3) and Φ(LE) = 1.6 × 10(-4). The large value of Φ'(ICT)/Φ(LE) indicates that the forward LE → ICT reaction is much faster than the back reaction. The data obtained for the intersystem crossing yield Φ(ISC) show that internal conversion (IC) is the dominant deactivation channel from LE directly to the ground state S(0). For DMPURM in MeCN with Φ(ISC) = 0.22, Φ(IC) = 1 - Φ(ISC) - Φ'(ICT) - Φ(LE) = 0.78, whereas in cyclohexane an even larger Φ(IC) of 0.97 is found. The dipole moment gradually increases upon excitation, from 2.5 D (S(0)), via 6 D (LE) to 9 D (ICT) for DMPURM and from 2.3 D (S(0)), via 7 D (LE) to 8 D (ICT) for DMPURH. From the temperature dependence of Φ'(ICT)/Φ(LE), a reaction enthalpy -ΔH of 11 kJ/mol is obtained for DMPURM in n-hexane (ε(25) = 1.88), increasing to 17 kJ/mol in the more polar solvent di-n-butyl ether (ε(25) = 3.05). With DMPURM in diethyl ether, an activation energy of 8.3 kJ/mol is determined for the LE → ICT reaction (k(a)). The femtosecond excited state absorption spectra at 22 °C undergo an ultrafast decay: 1.0 ps in CHX and 0.63 ps in MeCN for DMPURM, still shorter (0.46 ps) for DMPURH in MeCN. With DMPURM in n-hexane, the LE fluorescence decay time τ(2) increases upon cooling from 2.6 ps at -45 °C to 6.9 ps at -95 °C. The decay involves ICT and IC as the two main pathways: 1/τ(2) ≅ k(a) + k(IC). As a model compound (no ICT) is not available, its lifetime τ(0)(LE) ∼ 1/k(IC) is not known, which prevents a separate determination of k(a). The excited state reactions of DMPURM and DMPURH are treated with a two-state model: S(0) → LE ⇄ ICT. With 6-N-methyl-9-methyladenine (MPURM) and 9-methyladenine (PURM), the fluorescence quantum yield is very low (<5 × 10(-5)) and dominated by impurities, due to enhanced IC from LE to S(0).


Assuntos
Adenina/análogos & derivados , Modelos Químicos , Absorção , Acetonitrilas/química , Adenina/química , Transporte de Elétrons , Hexanos/química , Cinética , Nitrilas/química , Nitritos/química , Solventes/química , Espectrometria de Fluorescência , Temperatura
9.
J Phys Chem A ; 114(48): 12622-38, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21069975

RESUMO

The photophysics of N-(4-cyanophenyl)carbazole (NP4CN) was investigated by using absorption and fluorescence spectra, picosecond fluorescence decays, and femtosecond transient absorption. In the nonpolar n-hexane as well as in the polar solvent acetonitrile (MeCN), a locally excited (LE) state is detected, as a precursor for the intramolecular charge transfer (ICT) state. A LE → ICT reaction time τ(2) at 22 °C of 0.95 ps in ethyl cyanide (EtCN) and 0.32 ps in MeCN is determined from the decay of the LE excited state absorption (ESA) maximum around 620 nm. In the ESA spectrum of NP4CN in n-hexane at a pump-probe delay time of 100 ps, an important contribution of the LE band remains alongside the ICT band, in contrast to what is observed in EtCN and MeCN. This shows that a LE ⇄ ICT equilibrium is established in this solvent and the ICT reaction time of 0.5 ps is equal to the reciprocal of the sum of the forward and backward ICT rate constants 1/(k(a) + k(d)). In the photostationary S(0) → S(n) absorption spectrum of NP4CN in n-hexane and MeCN, an additional CT absorption band appears, absent in the sum of the spectra of its electron donor (D) and acceptor (A) subgroups carbazole and benzonitrile. This CT band is located at an energy of ∼4000 cm(-1) lower than for N-phenylcarbazole (NPC), due to the larger electron affinity of the benzonitrile moiety of NP4CN than the phenyl subunit of NPC. The fluorescence spectrum of NP4CN in n-hexane at 25 °C mainly consists of a structured LE emission, with a small ICT admixture, indicating that a LE → ICT reaction just starts to occur under these conditions. In di-n-pentyl ether (DPeE) and di-n-butyl ether (DBE), a LE emission is found upon cooling at the high-energy edge of the ICT fluorescence band, caused by the onset of dielectric solvent relaxation. This is not the case in more polar solvents, such as diethyl ether (DEE) and MeCN, in which a structureless ICT emission band fully overlaps the strongly quenched LE fluorescence. For the series of D/A molecules NPC, N-(4-fluorophenyl)carbazole (NP4F), N-[4-(trifluoromethyl)phenyl]carbazole (NP4CF), and NP4CN, with increasing electron affinity of their phenyl subgroup, an ICT emission in n-hexane 25 °C only is present for NP4CN, whereas in MeCN an ICT fluorescence is observed with NP4CF and NP4CN. The ICT fluorescence appears when for the energies E(ICT) of the ICT state and E(S(1)) of the lowest excited singlet state the condition E(ICT) ≤ E(S(1)) holds. E(ICT) is calculated from the difference E(D/D(+)) - E(A(-)/A) of the redox potentials of the D and A subgroups of the N-phenylcarbazoles. From solvatochromic measurements with NP4CN an ICT dipole moment µ(e)(ICT) = 19 D is obtained, somewhat larger than the literature values of 10-16 D, because of a different Onsager radius ρ. The carbazole/phenyl twist angle θ = 45° of NP4CN in the S(0) ground state, determined from X-ray crystal analysis, has become smaller for its ICT state, in analogy with similar conclusions for related N-phenylcarbazoles and other D/A molecules in the literature.


Assuntos
Carbazóis/química , Fluorescência , Acetonitrilas/química , Cristalografia por Raios X , Hexanos/química , Modelos Moleculares , Estrutura Molecular , Fotoquímica , Espectrometria de Fluorescência , Estereoisomerismo
10.
J Phys Chem A ; 114(50): 13031-9, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21105688

RESUMO

Pentacyano-N,N-dimethylaniline (PCDMA) does not undergo an intramolecular charge transfer (ICT) reaction, even in the strongly polar solvent acetonitrile (MeCN), in clear contrast to 4-(dimethylamino)benzonitrile (DMABN). Within the twisted ICT (TICT) model, this is unexpected, as the electron affinity of the pentacyanobenzene moiety of PCDMA is much larger than that of the benzonitrile subgroup in DMABN. According to the TICT model, the energy of the ICT state of PCDMA would be 2.05 eV (∼16550 cm(-1)) lower than that of DMABN, on the basis of the reduction potentials E(A(-)/A) of pentacyanobenzene (-0.29 V vs saturated calomel electrode (SCE)) and benzonitrile (-2.36 V vs SCE), more than enough to compensate for the decrease in energy of the locally excited (LE) state of PCDMA (E(S(1)) = 19990 cm(-1)) relative to that of DMABN (E(S(1)) = 29990 cm(-1)). This absence of a LE → ICT reaction shows that the TICT hypothesis does not hold for PCDMA in the singlet excited state, similar to what was found for DMABN, N-phenylpyrrole, and their derivatives. In this connection, the six dicyano-substituted dimethylanilines are also discussed. The energy gap ΔE(S(1),S(2)) between the two lowest singlet excited states is, at 7170 cm(-1) for PCDMA in MeCN, considerably larger than that for DMABN (2700 cm(-1) in n-hexane, smaller in MeCN). The absence of ICT is therefore in accord with the planar ICT (PICT) model, which considers a sufficiently small ΔE(S(1),S(2)) to be an important condition determining whether an ICT reaction will take place. The fluorescence quantum yield of PCDMA is very small: Φ(LE) = 0.0006 in MeCN at 25 °C, predominantly due to LE → S(0) internal conversion (IC), as the intersystem crossing yield Φ(ISC) is practically zero (<0.01). From the LE fluorescence decay time of 27 ps for PCDMA in MeCN at 25 °C, a radiative rate constant k(f)(LE) = 2 × 10(7) s(-1) results, comparable to the k(f)(LE) of DMABN (6.5 × 10(7) s(-1)) and 2,4,6-tricyano-N,N-dimethylaniline (TCDMA) (1.2 × 10(7) s(-1)) in this solvent, but clearly larger than the k'(f)(ICT) = 0.79 × 10(7) s(-1) of DMABN in MeCN. The IC reaction with PCDMA in MeCN at room temperature, with a rate constant k(IC) of 3.6 × 10(10) s(-1), is much faster than with TCDMA (25 × 10(7) s(-1)) and DMABN (1.3 × 10(7) s(-1), in n-hexane). This is connected with the nonzero (37°) amino twist angle of PCDMA, which leads to a decrease of the effective LE-S(0) energy gap. The femtosecond excited state absorption (ESA) spectra of PCDMA in MeCN at 22 °C are similar to the LE ESA spectra of TCDMA and DMABN and are therefore attributed to the LE state, confirming that an ICT reaction does not occur. The decay of the LE ESA spectra of PCDMA is single exponential, with a decay time of 22 ps, in reasonable agreement with the LE fluorescence decay time of 27 ps at 25 °C. The spectra decay to zero, showing that there is no triplet or other intermediate.


Assuntos
Compostos de Anilina/química , Benzeno/química , Elétrons , Absorção , Acetonitrilas/química , Cinética , Nitrilas/química , Espectrometria de Fluorescência , Termodinâmica
11.
J Am Chem Soc ; 132(22): 7730-44, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20469862

RESUMO

Calculations of molecular structures in the electronic ground state S(0) and of excited state and fluorescence energies generally refer to the gas phase. This complicates a comparison with experimental data, which often are only available for molecules in solution. Therefore, experimental absorption and fluorescence spectra in the vapor phase are presented for 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6), 1-methyl-6-cyano-1,2,3,4-tetrahydroquinoline (NMC6), 4-(dimethylamino)benzonitrile (DMABN), and 4-(diisopropylamino)benzonitrile (DIABN). NTC6 and DIABN show a dual fluorescence in the gas phase, with emissions from an intramolecular charge transfer (ICT) and a locally excited (LE) state, whereas with NMC6 and DMABN only LE emission is observed. For a comparison of the experimental molecular structure in S(0) with the results of recent computations, X-ray crystal structures of NTC6, NMC6, and several analogues are presented. For DMABN, NMC6, and NTC6, LE/ICT energy diagrams are constructed, in which the experimental energies of the Franck-Condon singlet excited states S(1) and S(2), and the LE and ICT states together with their emissions, are compared with the calculations. The LE and ICT dipole moments are also discussed. This comparison reveals substantial differences, in particular for the ICT energies, but even for the structure of the S(0) ground states. It is concluded that the computed ICT states of NTC6 and DMABN, in which the full conjugation of the phenyl ring is interrupted, is different from the ICT states measured in the experiments.

12.
J Phys Chem A ; 114(4): 1621-32, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20043687

RESUMO

The reaction from the initially prepared locally excited (LE) precursor to the intramolecular charge transfer (ICT) state of the planarized fluorazene (FPP) is investigated and compared with its flexible counterpart N-phenylpyrrole (PP). The fluorescence spectra of FPP and PP at 25 degrees C in solvents of different polarity reveal that the onset of a LE --> ICT reaction occurs at lower polarity (tetrahydrofuran, epsilon = 7.39) for FPP than for PP (1,2-dichloroethane, epsilon = 10.4). In accordance with this observation, the ICT reaction enthalpy -DeltaH is larger for FPP than for PP, 16.7 versus 6.7 kJ/mol in ethyl cyanide (EtCN). The larger ICT efficiency of FPP is related to the smaller energy gap between the two lowest excited singlet states DeltaE(S(1),S(2)): 3680 cm(-1) for FPP and 4070 cm(-1) for PP in n-hexane, as would be expected in the context of the PICT model. From picosecond fluorescence decays in EtCN at -45 degrees C it is found that the LE --> ICT reaction rate constant k(a) of FPP is with 9.8 x 10(10) s(-1) considerably larger than that of PP with 3.9 x 10(10) s(-1). From femtosecond transient absorption spectra in acetonitrile (MeCN) at 22 degrees C, an ICT reaction time of 1.6 ps is obtained for FPP, shorter than the 4.0 ps determined for PP. The results show that a perpendicular twist of the pyrrole and phenyl subgroups is not required for an efficient ICT reaction with PP, the planarization of FPP even making this reaction faster. The similarity of the ESA spectra of FPP with those of PP in MeCN, with ICT absorption maxima at 365 nm (FPP) and 370 nm (PP), leads to the conclusion that both ICT states have a planar structure.


Assuntos
Compostos Heterocíclicos com 3 Anéis/química , Pirróis/química , Espectrometria de Fluorescência , Termodinâmica
13.
J Chem Phys ; 131(22): 224313, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20001042

RESUMO

For the double exponential fluorescence decays of the locally excited (LE) and intramolecular charge transfer (ICT) states of 4-(dimethylamino)benzonitrile (DMABN) in acetonitrile (MeCN) the same times tau(1) and tau(2) are observed. This means that the reversible LE<==>ICT reaction, starting from the initially excited LE state, can be adequately described by a two state mechanism. The most important factor responsible for the sometimes experimentally observed differences in the nanosecond decay time, with tau(1)(LE)

Assuntos
Nitrilas/química , Hexanos/química , Estrutura Molecular , Solventes/química , Espectrometria de Fluorescência/métodos
14.
Photochem Photobiol Sci ; 8(10): 1448-54, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19789815

RESUMO

The photophysics of free pyrenedicarboxamide (Py-DCA) in solution as well as of single-stranded and double-stranded oligonucleotides (ss and ds ONs) containing 1-7 pyrene building blocks per strand were studied by steady-state and time-resolved fluorescence spectroscopy. It was found that the fluorescence quantum yield Phi(F) of free Py-DCA chromophore in solution is rather high (Phi(F) = 0.44). However, after incorporation of the chromophore into a ss ON the monomeric chromophore fluorescence is quenched more than 40-fold due to electron-transfer reactions with ON bases. An increase of the number n of neighboring pyrenes in an ON results in Phi(F) growth up to 0.25 at n = 6. Starting from n = 2, all fluorescence belongs mainly to excimer formed by pyrene chromophores. Sections composed of multiple pyrenes may be considered as robust functional entities that may serve as independent modules in DNA-based, functional nano-architectures.


Assuntos
DNA/química , Nanotecnologia , Pirenos/química , Absorção , Amidas/química , Sequência de Bases , DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Espectrometria de Fluorescência , Fatores de Tempo
15.
J Phys Chem A ; 113(33): 9304-20, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19719292

RESUMO

With 4-fluorofluorazene (FPP4F) and its flexible counterpart 4-fluoro-N-phenylpyrrole (PP4F) an intramolecular charge transfer (ICT) reaction occurs in the singlet excited state in sufficiently polar solvents. The ICT reaction begins to appear in tetrahydrofuran (epsilon = 7.4) for FPP4F and in the more polar 1,2-dichloroethane (epsilon = 10.4) with PP4F, showing its presence by dual fluorescence from a locally excited (LE) and an ICT state. Only LE fluorescence is observed in less polar solvents such as n-hexane. The ICT reaction is more pronounced with FPP4F than for PP4F, due to the smaller energy gap DeltaE(S1,S2) of the former molecule, in accordance with the PICT model. The occurrence of an ICT reaction is confirmed by the ICT dipole moments mu(e)(ICT) of 12 D (FPP4F) and 10 D (PP4F), clearly larger than mu(e)(LE) of approximately 4 D for FPP4F and PP4F. Isoemissive points are found in the fluorescence spectra of FPP4F and PP4F in acetonitrile (MeCN), ethyl cyanide (EtCN), and n-propyl cyanide (PrCN) as a function of temperature, confirming the two-state (LE and ICT) reaction mechanism. From plots of the logarithm of the ICT/LE fluorescence quantum yield ratio versus the reciprocal absolute temperature in these solvents, the ICT reaction enthalpies DeltaH are determined, with larger -DeltaH values for FPP4F than for PP4F: 19.2 as compared with 14.9 kJ/mol in MeCN, as an example. The picosecond fluorescence decay of PP4F at -45 degrees C becomes slower with decreasing solvent polarity, 5.1 ps (MeCN), 14 ps (EtCN), and 35 ps (PrCN), from which the LE --> ICT reaction rate constant is calculated, decreasing from 19 x 10(10) to 2.1 x 10(10) s(-1) between MeCN and PrCN. The femtosecond LE excited-state absorption spectra of FPP4F and PP4F do not undergo any time development in n-hexane (no ICT reaction), but show a fast ICT reaction in MeCN at 22 degrees C, with decay times of 1.1 ps (FPP4F) and 3.3 ps (PP4F). It is concluded that FPP4F and PP4F have a planar ICT state (PICT model), indicating that a perpendicular twist of the donor and acceptor subgroups in a donor/acceptor molecule is not a requirement for fast and efficient ICT. The molecular structures of FPP4F and PP4F obtained from X-ray crystal analysis reveal that the pyrrole group of PP4F is twisted over an angle theta = 25 degrees relative to the fluorophenyl moiety in the ground state, whereas as expected FPP4F is practically planar (theta = 2 degrees). The pyrrole-phenyl bond length of FPP4F (140.7 pm) is shorter than that for PP4F (141.8 pm).


Assuntos
Compostos Heterocíclicos com 3 Anéis/química , Pirróis/química , Absorção , Transporte de Elétrons , Hexanos/química , Cinética , Nitrilas/química , Espectrometria de Fluorescência , Temperatura , Termodinâmica
16.
J Phys Chem A ; 113(35): 9684-91, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19673504

RESUMO

The static electron densities of the title compounds were extracted from high-resolution X-ray diffraction data using the nucleus-centered finite multipole expansion technique. The interpretation of the data collected for the N-phenylpyrrole crystal revealed a static disorder that could be successfully resolved within the aspherical-atom formalism. The local and integrated topological properties of the density obtained via a constrained multipole refinement are in statistical agreement with those calculated at the B3LYP/cc-pVTZ level of theory for the isolated molecule and for those derived from the experimental density of the para-fluorinated derivative N-(4-fluorophenyl)pyrrole. The topological analysis of the densities indicates neither pyramidal character of the pyrrole N-atom nor a quinoidal structure of the phenyl rings in either molecule. The fluorine substitution appears to have only a minor effect on the density of the remaining constituents but it results in markedly different features of the electrostatic potential of the two compounds. The consistency of the multipole refinement is validated by residual density analysis.


Assuntos
Pirróis/química , Eletricidade Estática , Elétrons
17.
J Phys Chem A ; 113(12): 2693-710, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19256484

RESUMO

The fluorescence spectra of 2,4,6-tricyano-N,N-dimethylaniline (TCDMA), 2,4,6-tricyano-N-methylaniline (TCMA), and 2,4,6-tricyanoaniline (TCA) consist of a single emission band, even in the polar solvent acetonitrile (MeCN). This indicates that an intramolecular charge transfer (ICT) reaction from the initially prepared locally excited (LE) state does not take place with these molecules, in contrast to 4-(dimethylamino)benzonitrile (DMABN), although the electron accepting capability of the tricyanobenzene moiety in TCDMA, TCMA, and TCA is substantially larger than that of the benzonitrile group in DMABN. In support of this conclusion, the picosecond fluorescence decays of the tricyanoanilines are single-exponential. Only with TCDMA in MeCN at the highest time resolution, double-exponential decays are observed. On the basis of a similar temporal evolution of around 2 ps in the femtosecond excited-state absorption (ESA) spectra of TCDMA in this solvent, the time development is attributed to the presence of two rapidly interconverting S(1) conformers. The same conclusion is reached from CASPT2/CASSCF computations on TCDMA, in which two S(1) minima are identified. The ESA spectra of TCDMA, TCMA, and TCA resemble that of the LE state of DMABN, but are different from its ICT ESA spectrum, likewise showing that an ICT reaction does not occur with the tricyanoanilines. From the luminescence spectrum of TCDMA in n-propyl cyanide at -160 degrees C, it follows that intersystem crossing and not internal conversion is the main S(1) deactivation channel. The radiative rate constant of TCDMA in MeCN is smaller than that of TCMA and TCA, which indicates that the S(1) state of TCDMA has a larger ICT contribution than in the case of TCMA and TCA, in accordance with the results of the calculations, which show that the S(1) state displays ICT valence bond character. Extrapolated gas-phase data for TCDMA and TCA are compared with the results of the computations, revealing a good agreement. The calculations on TCDMA and TCA also lead to the conclusion that the lowest excited singlet state S(1) determines its photophysical behavior, without the occurrence of an LE --> ICT reaction, in the sense that the initially excited LE state has already a strong ICT character and there is no equilibrium between two electronic states with strongly different electronic structures (i.e., LE and ICT with very different dipole moments) leading to dual (LE + ICT) fluorescence.

19.
J Phys Chem A ; 112(36): 8238-53, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18710193

RESUMO

The fluorescence spectrum of the rigidified 4-cyanofluorazene (FPP4C) in n-hexane consists of a dual emission from a locally excited (LE) and an intramolecular charge-transfer (ICT) state, with an ICT/LE fluorescence quantum yield ratio of Phi'(ICT)/Phi(LE) = 3.3 at 25 degrees C. With the flexible 4-cyano- N-phenylpyrrole (PP4C) in n-hexane, such an ICT reaction also takes place, with Phi'(ICT)/Phi(LE) = 1.5, indicating that for this reaction, a perpendicular twist of the pyrrole and benzonitrile moieties is not required. The ICT emission band of FPP4C and PP4C in n-hexane has vibrational structure, but a structureless band is observed in all other solvents more polar than the alkanes. The enthalpy difference Delta H of the LE --> ICT reaction in n-hexane, -11 kJ/mol for FPP4C and -7 kJ/mol for PP4C, is determined by analyzing the temperature dependence of Phi'(ICT)/Phi(LE). Using these data, the energy E(FC,ICT) of the Franck-Condon ground state populated by the ICT emission is calculated, 41 (FPP4C) and 40 kJ/mol (PP4C). These large values for E(FC,ICT) lead to the conclusion that with FPP4C and PP4C, direct ICT excitation, bypassing LE, does not take place. FPP4C has an ICT dipole moment of 15 D, similar to that of PP4C (16 D). Picosecond fluorescence decays allow the determination of the ICT lifetime, from which the radiative rate constant k'(f)(ICT) is derived, with comparable values for FPP4C and PP4C. This shows that an argument for a twisted ICT state of PP4C cannot come from k'(f)(ICT). After correction for the solvent refractive index and the energy of the emission maximum nu(max)(ICT), it appears that k'(f)(ICT) is solvent-polarity-independent. Femtosecond transient absorption with FPP4C and PP4C in n-hexane reveals that the ICT state is already nearly fully present at 100 fs after excitation, in rapid equilibrium with LE. In MeCN, the ICT state of FPP4C and PP4C is likewise largely developed at this delay time, and the reaction is limited by dielectric solvent relaxation, which shows that the ICT reaction is ultrafast, at the experimental time limit of 50 fs. PP4C and FPP4C have a similar planar ICT structure, without an appreciable twist of the pyrrole and benzonitrile subgroups. Their crystal structure is compared with calculations for the S0 ground state.


Assuntos
Cianetos/química , Nitrilas/química , Pirróis/química , Solventes/química , Espectrometria de Fluorescência/métodos , Absorção , Acetonitrilas/química , Algoritmos , Transferência de Energia , Fluorescência , Hexanos/química , Cinética , Teoria Quântica , Termodinâmica
20.
J Phys Chem A ; 112(13): 2749-61, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18331006

RESUMO

The newly synthesized aminobenzonitriles with two bulky amino substituents 4-(di-tert-butylamino)benzonitrile (DTABN) and 3-(di-tert-butylamino)benzonitrile (mDTABN) have strongly twisted amino groups in the ground state. From X-ray crystal analysis it is found that the amino twist angle theta of mDTABN equals 86.5 degrees , whereas a twist angle of around 75 degrees is deduced for DTABN from the extinction coefficient of its lowest-energy absorption band in n-hexane. Because of the electronic decoupling between the amino and benzonitrile groups caused by these large twist angles, the absorption of DTABN and mDTABN is relatively weak below 40000 cm-1, with extinction coefficients around 25 times smaller than those of the planar 4-(dimethylamino)benzonitrile (DMABN). DTABN as well as mDTABN undergo efficient intramolecular charge transfer (ICT) in the singlet excited state, in nonpolar (n-hexane) as well as in polar (acetonitrile) solvents. Their fluorescence spectra consist of an ICT emission band, without evidence for locally excited (LE) fluorescence. The occurrence of efficient ICT with mDTABN is different from the findings with all other N,N-dialkylaminobenzonitriles in the literature, for which ICT only appears with the para-derivative. From solvatochromic measurements, an ICT dipole moment of 17 D is determined for DTABN as well as for mDTABN, similar to that of DMABN. The picosecond fluorescence decays of DTABN (time resolution 3 ps) are effectively single exponential. Their decay time is equal to the ICT lifetime tau'0(ICT), which increases with solvent polarity from 0.86 ns in n-hexane to 3.48 ns in MeCN at 25 degrees C. The femtosecond excited-state absorption (ESA) spectra of DTABN in n-hexane and MeCN at 22 degrees C show a decay of the LE and a corresponding rise of the ICT absorption. The ICT reaction time is 70 fs in n-hexane and 60 fs in MeCN. DTABN and mDTABN may have a strongly twisted ICT state, similar to that of 6-cyanobenzoquinuclidine but different from that of DMABN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...