Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-496375

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent responsible for the ongoing global pandemic. With over 500 million cases and more than 6 million deaths reported globally, the need for access to effective vaccines is clear. An ideal SARS-CoV-2 vaccine will prevent pathology in the lungs and prevent virus replication in the upper respiratory tract, thus reducing transmission. Here, we assessed the efficacy of an adjuvanted SARS-CoV-2 S1 subunit vaccine, called COVAC-1, in an African green monkey (AGM) model. AGMs immunized and boosted with COVAC-1 were protected from SARS-CoV-2 challenge compared to unvaccinated controls based on reduced pathology and reduced viral RNA levels and infectious virus in the respiratory tract. Both neutralizing antibodies and antibodies capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) were observed in vaccinated animals prior to the challenge. COVAC-1 induced effective protection, including in the upper respiratory tract, thus supporting further development and utility for determining the mechanism that confers this protection. AUTHOR SUMMARYVaccines that can prevent the onward transmission of SARS-CoV-2 and prevent disease are highly desirable. Whether this can be accomplished without mucosal immunization by a parenterally administered subunit vaccine is not well established. Here we demonstrate that following two vaccinations, a protein subunit vaccine containing the S1 portion of the SARS-CoV-2 spike glycoprotein and the novel adjuvant TriAdj significantly reduces the amount of virus in the lungs and also mediates rapid clearance of the virus from the upper respiratory tract. Further support of the effectiveness of COVAC-1 was the observation of reduced pathology in the lungs and viral RNA being largely absent from tissues, blood, and rectal swabs. Thus COVAC-1 appears promising at mediating protection in both the upper and lower respiratory tract and may be capable of reducing subsequent transmission of SARS-CoV-2. Further investigation into the mechanism of protection in the upper respiratory tract and the initial immune response that supports this would be warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...