Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(20): 205901, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167429

RESUMO

We examine the effect of mechanical strain on the migration of oxygen vacancies in fluorite-structured ceria by means of density functional theory calculations. Different strain states (uniaxial, biaxial and isotropic) and strain magnitudes (up to ± 7%) are considered. From the calculations we extract the complete activation volume tensor for oxygen-vacancy migration in CeO(2), that is, all diagonal ΔV(mig,kk) and off-diagonal ΔV(mig,kl) tensor elements. These individual tensor elements are found, crucially, to be independent of strain state; they do, however, depend on stress (ΔV(mig,kk)) or effective pressure (ΔV(mig,kl)). Armed with knowledge of all tensor elements we predict strain states for which oxygen-ion transport in ceria is maximized. In general, with our approach the effect of an arbitrary strain state on the migration barrier for mass transport in a solid can be calculated quantitatively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...