Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pathogens ; 12(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37111449

RESUMO

Chickpea is susceptible to fungal infection and mycotoxin contamination. Argentina exports most of its chickpea production; thus, its quality is of concern. The Alternaria fungal genus was found to be prevalent in chickpea samples from Argentina. The species within this genus are able to produce mycotoxins, such as alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TA). In this context, we evaluated the effect of water activity (0.99, 0.98, 0.96, 0.95, 0.94, 0.92, and 0.90 aW), temperature (4, 15, 25, and 30 °C), incubation time (7, 14, 21, and 28 days), and their interactions on mycelial growth and AOH, AME, and TA production on chickpea-based medium by two A. alternata strains and one A. arborescens strain isolated from chickpea in Argentina. Maximum growth rates were obtained at the highest aW (0.99) and 25 °C, with growth decreasing as the aW of the medium and the temperature were reduced. A. arborescens grew significantly faster than A. alternata. Mycotoxin production was affected by both variables (aW and temperature), and the pattern obtained was dependent on the strains/species evaluated. In general, both A. alternata strains produced maximum amounts of AOH and AME at 30 °C and 0.99-0.98 aW, while for TA production, both strains behaved completely differently (maximum levels at 25 °C and 0.96 aW for one strain and 30 °C and 0.98 aW for the other). A. arborescens produced maximum amounts of the three toxins at 25 °C and 0.98 aW. Temperature and aW conditions for mycotoxin production were slightly narrower than those for growth. Temperature and aW conditions assayed are those found during chickpea grain development in the field, and also could be present during storage. This study provides useful data on the conditions representing a risk for contamination of chickpea by Alternaria toxins.

3.
Rev Argent Microbiol ; 53(1): 64-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32593584

RESUMO

Fumonisin occurrence was reported in wheat grains and F. proliferatum has been suggested to be the main contributor to its presence in wheat. Thus, a survey was performed in order to study the impact of four commercial fungicides used in Argentina for controlling Fusarium head blight disease (epoxiconazole+metconazole, tebuconazole, pyraclostrobin+epoxiconazole, and prothioconazole) on growth and fumonisin production of two F. proliferatum strains in relation to water activity (aW; 0.99, 0.97, 0.95) and temperature (15°C and 25°C). Most fungicides reduced growth rates when compared to the control (reduction increased as fungicide concentration increased), and reduced fumonisin production when they were used at high doses; however, most fungicides enhanced fumonisin production at sublethal doses, with the exception of prothioconazole. Thus, fungicides used for FHB management could enhance fumonisin production by F. proliferatum strains present in wheat grains.


Assuntos
Fumonisinas , Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Triticum
4.
Pathogens ; 8(1)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841490

RESUMO

The objectives of the present study were to determine the combined effects of chitosan and water activity (aW) on growth and mycotoxin production in situ on the two most important Fusarium species (F. proliferatum and F. verticillioides) present on maize, and on F. graminearum, the main pathogen causing Fusarium head blight on wheat. Results showed that low-molecular-weight chitosan with more than 70% deacetylation at the lowest dose used (0.5 mg/g) was able to reduce deoxynivalenol (DON) and fumonisin (FBs) production on irradiated maize and wheat grains. Growth rates of F. graminearum also decreased at the lowest chitosan dose used (0.5 mg/g), while F. verticillioides and F. proliferatum growth rates were reduced at 0.98 aW at the highest chitosan dose used (2 mg/g). Since mycotoxins are unavoidable contaminants in food and feed chains, their presence needs to be reduced in order to minimize their effects on human and animal health and to diminish the annual market loss through rejected maize and wheat; in this scenario, pre- and post-harvest use of chitosan could be an important alternative.

5.
Int J Food Microbiol ; 185: 51-6, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24929683

RESUMO

The objectives of the present study were to determine the in vitro efficacy of chitosan (0.5, 1.0, 2.0 and 3.0mg/mL) under different water availabilities (0.995, 0.99, 0.98, 0.96 and 0.93) at 25°C on lag phase, growth rate and fumonisin production by isolates of Fusarium verticillioides and Fusarium proliferatum. The presence of chitosan affected growth and fumonisin production, and this effect was dependent on the dose and aW treatment used. The presence of chitosan increased the lag phase, and reduced the growth rate of both Fusarium species significantly at all concentrations used, especially at 0.93 aW. Also, significant reduction of fumonisin production was observed in both Fusarium species at all conditions assayed. The present study has shown the combined effects of chitosan and aW on growth and fumonisin production by the two most important Fusarium species present on maize. Low molecular weight (Mw) chitosan with more than 70% of degree of deacetylation (DD) at 0.5mg/mL was able to significantly reduce growth rate and fumonisin production on maize-based media, with maximum levels of reduction in both parameters obtained at the highest doses used. As fumonisins are unavoidable contaminants in food and feed chains, their presence needs to be reduced to minimize their effects on human and animal health and to diminish the annual market loss through rejected maize. In this scenario post-harvest use of chitosan could be an important alternative treatment.


Assuntos
Quitosana/farmacologia , Fumonisinas/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Água/farmacologia , Zea mays/microbiologia , Animais , Fumonisinas/análise , Fusarium/crescimento & desenvolvimento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...