Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
3.
Fertil Steril ; 122(1): 140-149, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604264

RESUMO

OBJECTIVE: To use self-reported preconception data to derive models that predict the risk of miscarriage. DESIGN: Prospective preconception cohort study. SETTING: Not applicable. PATIENTS: Study participants were female, aged 21-45 years, residents of the United States or Canada, and attempting spontaneous pregnancy at enrollment during 2013-2022. Participants were followed for up to 12 months of pregnancy attempts; those who conceived were followed through pregnancy and postpartum. We restricted analyses to participants who conceived during the study period. EXPOSURE: On baseline and follow-up questionnaires completed every 8 weeks until pregnancy, we collected self-reported data on sociodemographic factors, reproductive history, lifestyle, anthropometrics, diet, medical history, and male partner characteristics. We included 160 potential predictor variables in our models. MAIN OUTCOME MEASURES: The primary outcome was a miscarriage, defined as pregnancy loss before 20 weeks of gestation. We followed participants from their first positive pregnancy test until miscarriage or a censoring event (induced abortion, ectopic pregnancy, loss of follow-up, or 20 weeks of gestation), whichever occurred first. We fit both survival and static models using Cox proportional hazards models, logistic regression, support vector machines, gradient-boosted trees, and random forest algorithms. We evaluated model performance using the concordance index (survival models) and the weighted F1 score (static models). RESULTS: Among the 8,720 participants who conceived, 20.4% reported miscarriage. In multivariable models, the strongest predictors of miscarriage were female age, history of miscarriage, and male partner age. The weighted F1 score ranged from 73%-89% for static models and the concordance index ranged from 53%-56% for survival models, indicating better discrimination for the static models compared with the survival models (i.e., the ability of the model to discriminate between individuals with and without miscarriage). No appreciable differences were observed across strata of miscarriage history or among models restricted to ≥8 weeks of gestation. CONCLUSION: Our findings suggest that miscarriage is not easily predicted on the basis of preconception lifestyle characteristics and that advancing age and a history of miscarriage are the most important predictors of incident miscarriage.


Assuntos
Aborto Espontâneo , Humanos , Feminino , Adulto , Aborto Espontâneo/epidemiologia , Gravidez , Estudos Prospectivos , Adulto Jovem , Pessoa de Meia-Idade , Fatores de Risco , Medição de Risco , Estados Unidos/epidemiologia , Valor Preditivo dos Testes , Canadá/epidemiologia , Estudos de Coortes , Masculino , Autorrelato
4.
Front Endocrinol (Lausanne) ; 15: 1298628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356959

RESUMO

Introduction: Predictive models have been used to aid early diagnosis of PCOS, though existing models are based on small sample sizes and limited to fertility clinic populations. We built a predictive model using machine learning algorithms based on an outpatient population at risk for PCOS to predict risk and facilitate earlier diagnosis, particularly among those who meet diagnostic criteria but have not received a diagnosis. Methods: This is a retrospective cohort study from a SafetyNet hospital's electronic health records (EHR) from 2003-2016. The study population included 30,601 women aged 18-45 years without concurrent endocrinopathy who had any visit to Boston Medical Center for primary care, obstetrics and gynecology, endocrinology, family medicine, or general internal medicine. Four prediction outcomes were assessed for PCOS. The first outcome was PCOS ICD-9 diagnosis with additional model outcomes of algorithm-defined PCOS. The latter was based on Rotterdam criteria and merging laboratory values, radiographic imaging, and ICD data from the EHR to define irregular menstruation, hyperandrogenism, and polycystic ovarian morphology on ultrasound. Results: We developed predictive models using four machine learning methods: logistic regression, supported vector machine, gradient boosted trees, and random forests. Hormone values (follicle-stimulating hormone, luteinizing hormone, estradiol, and sex hormone binding globulin) were combined to create a multilayer perceptron score using a neural network classifier. Prediction of PCOS prior to clinical diagnosis in an out-of-sample test set of patients achieved an average AUC of 85%, 81%, 80%, and 82%, respectively in Models I, II, III and IV. Significant positive predictors of PCOS diagnosis across models included hormone levels and obesity; negative predictors included gravidity and positive bHCG. Conclusion: Machine learning algorithms were used to predict PCOS based on a large at-risk population. This approach may guide early detection of PCOS within EHR-interfaced populations to facilitate counseling and interventions that may reduce long-term health consequences. Our model illustrates the potential benefits of an artificial intelligence-enabled provider assistance tool that can be integrated into the EHR to reduce delays in diagnosis. However, model validation in other hospital-based populations is necessary.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/diagnóstico , Estudos Retrospectivos , Inteligência Artificial , Registros Eletrônicos de Saúde , Hormônio Luteinizante , Algoritmos , Aprendizado de Máquina
5.
medRxiv ; 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577593

RESUMO

Introduction: Predictive models have been used to aid early diagnosis of PCOS, though existing models are based on small sample sizes and limited to fertility clinic populations. We built a predictive model using machine learning algorithms based on an outpatient population at risk for PCOS to predict risk and facilitate earlier diagnosis, particularly among those who meet diagnostic criteria but have not received a diagnosis. Methods: This is a retrospective cohort study from a SafetyNet hospital's electronic health records (EHR) from 2003-2016. The study population included 30,601 women aged 18-45 years without concurrent endocrinopathy who had any visit to Boston Medical Center for primary care, obstetrics and gynecology, endocrinology, family medicine, or general internal medicine. Four prediction outcomes were assessed for PCOS. The first outcome was PCOS ICD-9 diagnosis with additional model outcomes of algorithm-defined PCOS. The latter was based on Rotterdam criteria and merging laboratory values, radiographic imaging, and ICD data from the EHR to define irregular menstruation, hyperandrogenism, and polycystic ovarian morphology on ultrasound. Results: We developed predictive models using four machine learning methods: logistic regression, supported vector machine, gradient boosted trees, and random forests. Hormone values (follicle-stimulating hormone, luteinizing hormone, estradiol, and sex hormone binding globulin) were combined to create a multilayer perceptron score using a neural network classifier. Prediction of PCOS prior to clinical diagnosis in an out-of-sample test set of patients achieved AUC of 85%, 81%, 80%, and 82%, respectively in Models I, II, III and IV. Significant positive predictors of PCOS diagnosis across models included hormone levels and obesity; negative predictors included gravidity and positive bHCG. Conclusions: Machine learning algorithms were used to predict PCOS based on a large at-risk population. This approach may guide early detection of PCOS within EHR-interfaced populations to facilitate counseling and interventions that may reduce long-term health consequences. Our model illustrates the potential benefits of an artificial intelligence-enabled provider assistance tool that can be integrated into the EHR to reduce delays in diagnosis. However, model validation in other hospital-based populations is necessary.

6.
J Am Med Inform Assoc ; 29(7): 1253-1262, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35441692

RESUMO

OBJECTIVE: To develop predictive models of coronavirus disease 2019 (COVID-19) outcomes, elucidate the influence of socioeconomic factors, and assess algorithmic racial fairness using a racially diverse patient population with high social needs. MATERIALS AND METHODS: Data included 7,102 patients with positive (RT-PCR) severe acute respiratory syndrome coronavirus 2 test at a safety-net system in Massachusetts. Linear and nonlinear classification methods were applied. A score based on a recurrent neural network and a transformer architecture was developed to capture the dynamic evolution of vital signs. Combined with patient characteristics, clinical variables, and hospital occupancy measures, this dynamic vital score was used to train predictive models. RESULTS: Hospitalizations can be predicted with an area under the receiver-operating characteristic curve (AUC) of 92% using symptoms, hospital occupancy, and patient characteristics, including social determinants of health. Parsimonious models to predict intensive care, mechanical ventilation, and mortality that used the most recent labs and vitals exhibited AUCs of 92.7%, 91.2%, and 94%, respectively. Early predictive models, using labs and vital signs closer to admission had AUCs of 81.1%, 84.9%, and 92%, respectively. DISCUSSION: The most accurate models exhibit racial bias, being more likely to falsely predict that Black patients will be hospitalized. Models that are only based on the dynamic vital score exhibited accuracies close to the best parsimonious models, although the latter also used laboratories. CONCLUSIONS: This large study demonstrates that COVID-19 severity may accurately be predicted using a score that accounts for the dynamic evolution of vital signs. Further, race, social determinants of health, and hospital occupancy play an important role.


Assuntos
COVID-19 , Cuidados Críticos , Mortalidade Hospitalar , Hospitalização , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Provedores de Redes de Segurança
7.
Hum Reprod ; 37(3): 565-576, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35024824

RESUMO

STUDY QUESTION: Can we derive adequate models to predict the probability of conception among couples actively trying to conceive? SUMMARY ANSWER: Leveraging data collected from female participants in a North American preconception cohort study, we developed models to predict pregnancy with performance of ∼70% in the area under the receiver operating characteristic curve (AUC). WHAT IS KNOWN ALREADY: Earlier work has focused primarily on identifying individual risk factors for infertility. Several predictive models have been developed in subfertile populations, with relatively low discrimination (AUC: 59-64%). STUDY DESIGN, SIZE, DURATION: Study participants were female, aged 21-45 years, residents of the USA or Canada, not using fertility treatment, and actively trying to conceive at enrollment (2013-2019). Participants completed a baseline questionnaire at enrollment and follow-up questionnaires every 2 months for up to 12 months or until conception. We used data from 4133 participants with no more than one menstrual cycle of pregnancy attempt at study entry. PARTICIPANTS/MATERIALS, SETTING, METHODS: On the baseline questionnaire, participants reported data on sociodemographic factors, lifestyle and behavioral factors, diet quality, medical history and selected male partner characteristics. A total of 163 predictors were considered in this study. We implemented regularized logistic regression, support vector machines, neural networks and gradient boosted decision trees to derive models predicting the probability of pregnancy: (i) within fewer than 12 menstrual cycles of pregnancy attempt time (Model I), and (ii) within 6 menstrual cycles of pregnancy attempt time (Model II). Cox models were used to predict the probability of pregnancy within each menstrual cycle for up to 12 cycles of follow-up (Model III). We assessed model performance using the AUC and the weighted-F1 score for Models I and II, and the concordance index for Model III. MAIN RESULTS AND THE ROLE OF CHANCE: Model I and II AUCs were 70% and 66%, respectively, in parsimonious models, and the concordance index for Model III was 63%. The predictors that were positively associated with pregnancy in all models were: having previously breastfed an infant and using multivitamins or folic acid supplements. The predictors that were inversely associated with pregnancy in all models were: female age, female BMI and history of infertility. Among nulligravid women with no history of infertility, the most important predictors were: female age, female BMI, male BMI, use of a fertility app, attempt time at study entry and perceived stress. LIMITATIONS, REASONS FOR CAUTION: Reliance on self-reported predictor data could have introduced misclassification, which would likely be non-differential with respect to the pregnancy outcome given the prospective design. In addition, we cannot be certain that all relevant predictor variables were considered. Finally, though we validated the models using split-sample replication techniques, we did not conduct an external validation study. WIDER IMPLICATIONS OF THE FINDINGS: Given a wide range of predictor data, machine learning algorithms can be leveraged to analyze epidemiologic data and predict the probability of conception with discrimination that exceeds earlier work. STUDY FUNDING/COMPETING INTEREST(S): The research was partially supported by the U.S. National Science Foundation (under grants DMS-1664644, CNS-1645681 and IIS-1914792) and the National Institutes for Health (under grants R01 GM135930 and UL54 TR004130). In the last 3 years, L.A.W. has received in-kind donations for primary data collection in PRESTO from FertilityFriend.com, Kindara.com, Sandstone Diagnostics and Swiss Precision Diagnostics. L.A.W. also serves as a fibroid consultant to AbbVie, Inc. The other authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Fertilidade , Infertilidade , Estudos de Coortes , Feminino , Humanos , Masculino , Gravidez , Estudos Prospectivos , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA