Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(1): 101915, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178853

RESUMO

In this study we presented a novel series of NNO tridentate ligands generating imino, amido and oxo donor pocket for Pd(II) coordination. All the compounds were meticulously characterized by elemental analysis and advanced spectroscopic techniques, including FTIR, proton and carbon NMR. The synthesized compounds underwent rigorous evaluation for their potential as anti-cancer agents, utilizing the aggressive breast cancer cell lines MDA-MB (ATCC) and MCF-7 as a crucial model for assessing growth inhibition in cancer cells. Remarkably, the MTT assay unveiled the robust anti-cancer activity for all palladium complexes against MDA-MB-231 and MCF-7 cells. Particularly, complex [Pd(L1)(CH3CN)] exhibited exceptional potency with an IC50 value of 25.50 ± 0.30 µM (MDA-MB-231) and 20.76 ± 0.30 µM (MCF-7), compared to respective 27.00 ± 0.80 µM and 24.10 ± 0.80 µM for cisplatin, underscoring its promising therapeutic potential. Furthermore, to elucidate the mechanistic basis for the anti-cancer effects, molecular docking studies on tyrosine kinases, an integral target in cancer research, were carried out. The outcome of these investigations further substantiated the remarkable anticancer properties inherent to these innovative compounds. This research offers a compelling perspective on the development of potent anti-cancer agents rooted in the synergy between ligands and Pd(II) complexes and presenting a promising avenue for future cancer therapy endeavors.

2.
RSC Adv ; 13(49): 34817-34825, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38035229

RESUMO

The conversion of CO2 into CO as a substitute for processing fossil fuels to produce hydrocarbons is a sustainable, carbon neutral energy technology. However, the electrochemical reduction of CO2 into a synthesis gas (CO and H2) at a commercial scale requires an efficient electrocatalyst. In this perspective, a series of six new palladium complexes with the general formula [Pd(L)(Y)]Y, where L is a donor-flexible PYA, N2,N6-bis(1-ethylpyridin-4(1H)-ylidene)pyridine-2,6-dicarboxamide, N2,N6-bis(1-butylpyridin-4(1H)-ylidene)pyridine-2,6-dicarboxamide, or N2,N6-bis(1-benzylpyridin-4(1H)-ylidene)pyridine-2,6-dicarboxamide, and Y = OAc or Cl-, were utilized as active electrocatalysts for the conversion of CO2 into a synthesis gas. These palladium(ii) pincer complexes were synthesized from their respective H-PYA proligands using 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) or sodium acetate as a base. All the compounds were successfully characterized by various physical methods of analysis, such as proton and carbon NMR, FTIR, CHN, and single-crystal XRD. The redox chemistry of palladium complexes toward carbon dioxide activation suggested an evident CO2 interaction with each Pd(ii) catalyst. [Pd(N2,N6-bis(1-ethylpyridin-4(1H)-ylidene)pyridine-2,6-dicarboxamide)(Cl)]Cl showed the best electrocatalytic activity for CO2 reduction into a synthesis gas under the acidic condition of trifluoracetic acid (TFA) with a minimum overpotential of 0.40 V, a maximum turnover frequency (TOF) of 101 s-1, and 58% FE of CO. This pincer scaffold could be stereochemically tuned with the exploration of earth abundant first row transition metals for further improvements in the CO2 reduction chemistry.

3.
Dalton Trans ; 43(45): 17006-16, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24869561

RESUMO

Double aza-Michael addition of n-butylamine to the two acrylamide groups of acyclic N(2),N(6)-bis(6-acrylamidopyridin-2-yl)pyridine-2,6-dicarboxamide gives the corresponding macrocycle, H4L. H4L has potential coordination pockets associated with the 2,6-dicarboxamide (head) and the butylamine (tail) regions of the macrocycle. Depending on the conditions employed, macrocyclic complexes with palladium(II) coordinated to either the tail or the head of the macrocycle can be isolated. Thus, treatment of H4L with [PdCl2(NCPh)2] and sodium acetate, or [Pd(OAc)2] gives the closely related "tail-coordinated" complexes [PdCl(H3L)] (3a) or [Pd(OAc)(H3L)] (3b), respectively. However, employment of the bases 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) or pyridine during the treatment of H4L with [Pd(OAc)2] results in the "head-coordinated" complexes [Pd(NH2R)(H2L)] (NH2R = N-(3-aminopropyl)caprolactam, which is formed by hydrolysis of DBU) (5) or [Pd(OH2)(H2L)] (6), respectively. Translocation of the palladium ion from the macrocycle tail in 3b to the head occurs on treatment with either DBU or N-(3-aminopropyl)caprolactam. In both cases the product 5 is formed. The aqua ligand in 6 is labile and easily displaced by the N-donor ligands n-butylamine, N-(3-aminopropyl)caprolactam or DBU to give the corresponding complexes [Pd(NH2(n)Bu)(H2L)] (4), (5), or [Pd(DBU)(H2L)] (7). The data suggest that hydrolysis of DBU to produce the N-(3-aminopropyl)caprolactam ligand in 5 is catalysed by the acetic acid formed during ligand metallation rather than by coordination to palladium. The X-ray crystal structures of H4L, 5, and 6 are reported.

4.
Inorg Chem ; 50(21): 10522-4, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21961733

RESUMO

N-[1-Alkylpyridin-4(1H)-ylidene]amides (PYAs) are a new class of easily prepared, neutral N-donor ligands that share some features in common with N-heterocyclic carbenes. They are strongly electron-donating toward metal centers, and a palladium(II) complex of one of these ligands has been shown to successfully catalyze both the Heck-Mizoroki and Suzuki-Miyaura cross-coupling reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...