Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956925

RESUMO

The efficacy of aprotinin combinations with selected antiviral-drugs treatment of influenza virus and coronavirus (SARS-CoV-2) infection was studied in mice models of influenza pneumonia and COVID-19. The high efficacy of the combinations in reducing virus titer in lungs and body weight loss and in increasing the survival rate were demonstrated. This preclinical study can be considered a confirmatory step before introducing the combinations into clinical assessment.


Assuntos
Tratamento Farmacológico da COVID-19 , Influenza Humana , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Aprotinina/uso terapêutico , Humanos , Influenza Humana/tratamento farmacológico , Camundongos , SARS-CoV-2
2.
Bioorg Med Chem ; 28(20): 115716, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069072

RESUMO

A series of novel small-molecule pan-genotypic hepatitis C virus (HCV) NS5A inhibitors with picomolar activity containing 2-[(2S)-pyrrolidin-2-yl]-5-[4-(4-{2-[(2S)-pyrrolidin-2-yl]-1H-imidazol-5-yl}buta-1,3-diyn-1-yl)phenyl]-1H-imidazole core was designed based on molecular modeling study and SAR analysis. The constructed in silico model and docking study provide a deep insight into the binding mode of this type of NS5A inhibitors. Based on the predicted binding interface we have prioritized the most crucial diversity points responsible for improving antiviral activity. The synthesized molecules were tested in a cell-based assay, and compound 1.12 showed an EC50 value in the range of 2.9-34 pM against six genotypes of NS5A HCV, including gT3a, and demonstrated favorable pharmacokinetic profile in rats. This lead compound can be considered as an attractive candidate for further clinical evaluation.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Imidazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Genótipo , Humanos , Imidazóis/síntese química , Imidazóis/química , Masculino , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
3.
Curr Drug Discov Technol ; 17(5): 716-724, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31161993

RESUMO

BACKGROUND: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g. E. Coli, K. pneumoniae and S. aureus, have high resistance vs the last generations of cephalosporins, carbapenems and fluoroquinolones. During the past decades, only few successful efforts to develop and launch new antibacterial medications have been performed. This study aims to identify new class of antibacterial agents using novel high-throughput screening technique. METHODS: We have designed library containing 125K compounds not similar in structure (Tanimoto coeff.< 0.7) to that published previously as antibiotics. The HTS platform based on double reporter system pDualrep2 was used to distinguish between molecules able to block translational machinery or induce SOS-response in a model E. coli system. MICs for most active chemicals in LB and M9 medium were determined using broth microdilution assay. RESULTS: In an attempt to discover novel classes of antibacterials, we performed HTS of a large-scale small molecule library using our unique screening platform. This approach permitted us to quickly and robustly evaluate a lot of compounds as well as to determine the mechanism of action in the case of compounds being either translational machinery inhibitors or DNA-damaging agents/replication blockers. HTS has resulted in several new structural classes of molecules exhibiting an attractive antibacterial activity. Herein, we report as promising antibacterials. Two most active compounds from this series showed MIC value of 1.2 (5) and 1.8 µg/mL (6) and good selectivity index. Compound 6 caused RFP induction and low SOS response. In vitro luciferase assay has revealed that it is able to slightly inhibit protein biosynthesis. Compound 5 was tested on several archival strains and exhibited slight activity against gram-negative bacteria and outstanding activity against S. aureus. The key structural requirements for antibacterial potency were also explored. We found, that the unsubstituted carboxylic group is crucial for antibacterial activity as well as the presence of bulky hydrophobic substituents at phenyl fragment. CONCLUSION: The obtained results provide a solid background for further characterization of the 5'- (carbonylamino)-2,3'-bithiophene-4'-carboxylate derivatives discussed herein as new class of antibacterials and their optimization campaign.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Tiofenos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Tiofenos/química
4.
Nat Biotechnol ; 37(9): 1038-1040, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31477924

RESUMO

We have developed a deep generative model, generative tensorial reinforcement learning (GENTRL), for de novo small-molecule design. GENTRL optimizes synthetic feasibility, novelty, and biological activity. We used GENTRL to discover potent inhibitors of discoidin domain receptor 1 (DDR1), a kinase target implicated in fibrosis and other diseases, in 21 days. Four compounds were active in biochemical assays, and two were validated in cell-based assays. One lead candidate was tested and demonstrated favorable pharmacokinetics in mice.


Assuntos
Aprendizado Profundo , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Receptor com Domínio Discoidina 1/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Animais , Receptor com Domínio Discoidina 1/genética , Cães , Inibidores Enzimáticos , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Ratos
5.
Front Pharmacol ; 10: 913, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507413

RESUMO

Many pharmaceutical companies are avoiding the development of novel antibacterials due to a range of rational reasons and the high risk of failure. However, there is an urgent need for novel antibiotics especially against resistant bacterial strains. Available in silico models suffer from many drawbacks and, therefore, are not applicable for scoring novel molecules with high structural diversity by their antibacterial potency. Considering this, the overall aim of this study was to develop an efficient in silico model able to find compounds that have plenty of chances to exhibit antibacterial activity. Based on a proprietary screening campaign, we have accumulated a representative dataset of more than 140,000 molecules with antibacterial activity against Escherichia coli assessed in the same assay and under the same conditions. This intriguing set has no analogue in the scientific literature. We applied six in silico techniques to mine these data. For external validation, we used 5,000 compounds with low similarity towards training samples. The antibacterial activity of the selected molecules against E. coli was assessed using a comprehensive biological study. Kohonen-based nonlinear mapping was used for the first time and provided the best predictive power (av. 75.5%). Several compounds showed an outstanding antibacterial potency and were identified as translation machinery inhibitors in vitro and in vivo. For the best compounds, MIC and CC50 values were determined to allow us to estimate a selectivity index (SI). Many active compounds have a robust IP position.

6.
J Med Chem ; 62(22): 10026-10043, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31188596

RESUMO

The paradigm of "drug-like-ness" dramatically altered the behavior of the medicinal chemistry community for a long time. In recent years, scientists have empirically found a significant increase in key properties of drugs that have moved structures closer to the periphery or the outside of the rule-of-five "cage". Herein, we show that for the past decade, the number of molecules claimed in patent records by major pharmaceutical companies has dramatically decreased, which may lead to a "chemical singularity". New compounds containing fragments with increased 3D complexity are generally larger, slightly more lipophilic, and more polar. A core difference between this study and recently published papers is that we consider the nature and quality of sp3-rich frameworks rather than sp3 count. We introduce the original descriptor MCE-18, which stands for medicinal chemistry evolution, 2018, and this measure can effectively score molecules by novelty in terms of their cumulative sp3 complexity.


Assuntos
Química Farmacêutica/métodos , Química Farmacêutica/tendências , Preparações Farmacêuticas/química , Algoritmos , Bases de Dados de Produtos Farmacêuticos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica/estatística & dados numéricos , Estrutura Molecular , Terapia de Alvo Molecular/métodos , Patentes como Assunto , Farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...