Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38584387

RESUMO

The intertidal gastropod Littorina saxatilis is a model system to study speciation and local adaptation. The repeated occurrence of distinct ecotypes showing different levels of genetic divergence makes L. saxatilis particularly suited to study different stages of the speciation continuum in the same lineage. A major finding is the presence of several large chromosomal inversions associated with the divergence of ecotypes and, specifically, the species offers a system to study the role of inversions in this divergence. The genome of L. saxatilis is 1.35 Gb and composed of 17 chromosomes. The first reference genome of the species was assembled using Illumina data, was highly fragmented (N50 of 44 kb), and was quite incomplete, with a BUSCO completeness of 80.1% on the Metazoan dataset. A linkage map of one full-sibling family enabled the placement of 587 Mbp of the genome into 17 linkage groups corresponding to the haploid number of chromosomes, but the fragmented nature of this reference genome limited the understanding of the interplay between divergent selection and gene flow during ecotype formation. Here, we present a newly generated reference genome that is highly contiguous, with a N50 of 67 Mb and 90.4% of the total assembly length placed in 17 super-scaffolds. It is also highly complete with a BUSCO completeness of 94.1% of the Metazoa dataset. This new reference will allow for investigations into the genomic regions implicated in ecotype formation as well as better characterization of the inversions and their role in speciation.


Assuntos
Cromossomos , Genoma , Animais , Cromossomos/genética , Gastrópodes/genética , Inversão Cromossômica , Ecótipo
2.
Ecol Evol ; 14(2): e10887, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304275

RESUMO

Harnessing science-based policy is key to addressing global challenges like the biodiversity and climate crises. Open research principles underpin effective science-based policy, but the uptake of these principles is likely constrained by the politicisation, commoditisation and conflicting motives of stakeholders in the research landscape. Here, using the mission and vision statements from 129 stakeholders from across the research landscape, we explore alignment in open research principles between stakeholders. We find poor alignment between stakeholders, largely focussed around journals, societies and funders, all of which have low open research language-use. We argue that this poor alignment stifles knowledge flow within the research landscape, ultimately limiting the mobilisation of impactful science-based policy. We offer recommendations on how the research landscape could embrace open research principles to accelerate societies' ability to solve global challenges.

3.
Science ; 383(6678): 114-119, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38175895

RESUMO

Key innovations are fundamental to biological diversification, but their genetic basis is poorly understood. A recent transition from egg-laying to live-bearing in marine snails (Littorina spp.) provides the opportunity to study the genetic architecture of an innovation that has evolved repeatedly across animals. Individuals do not cluster by reproductive mode in a genome-wide phylogeny, but local genealogical analysis revealed numerous small genomic regions where all live-bearers carry the same core haplotype. Candidate regions show evidence for live-bearer-specific positive selection and are enriched for genes that are differentially expressed between egg-laying and live-bearing reproductive systems. Ages of selective sweeps suggest that live-bearer-specific alleles accumulated over more than 200,000 generations. Our results suggest that new functions evolve through the recruitment of many alleles rather than in a single evolutionary step.


Assuntos
Evolução Biológica , Reprodução , Caramujos , Viviparidade não Mamífera , Animais , Haplótipos , Filogenia , Reprodução/genética , Seleção Genética , Caramujos/genética , Caramujos/fisiologia , Viviparidade não Mamífera/genética , Viviparidade não Mamífera/fisiologia
4.
Sci Rep ; 13(1): 22146, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092817

RESUMO

Alien plant species regularly and simultaneously invade agricultural landscapes and ecosystems; however, the effects of co-invasion on crop production and native biodiversity have rarely been studied. Secondary metabolites produced by alien plants may be allelopathic; if they enter the soil, they may be transported by agricultural activities, negatively affecting crop yield and biodiversity. It is unknown whether substances from different alien species in combination have a greater impact on crops and wild plants than if they are from only one of the alien species. In this study, we used a set of common garden experiments to test the hypothesis that mixed extracts from two common invasive species have synergistic effects on crops and weeds (defined as all non-crop plants) in European agricultural fields compared to single-species extracts. We found that both the combined and individual extracts had detrimental effects on the seed germination, seedling growth, biomass, and photosynthetic performance of both crops and weeds. We found that the negative effect of mixed extracts was not additive and that crop plants were more strongly affected by invasive species extracts than the weeds. Our results are important for managing invasive species in unique ecosystems on agricultural land and preventing economic losses in yield production.


Assuntos
Germinação , Espécies Introduzidas , Ecossistema , Plantas Daninhas , Produtos Agrícolas , Fotossíntese
5.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190545, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32654639

RESUMO

The evolution of strong reproductive isolation (RI) is fundamental to the origins and maintenance of biological diversity, especially in situations where geographical distributions of taxa broadly overlap. But what is the history behind strong barriers currently acting in sympatry? Using whole-genome sequencing and single nucleotide polymorphism genotyping, we inferred (i) the evolutionary relationships, (ii) the strength of RI, and (iii) the demographic history of divergence between two broadly sympatric taxa of intertidal snail. Despite being cryptic, based on external morphology, Littorina arcana and Littorina saxatilis differ in their mode of female reproduction (egg-laying versus brooding), which may generate a strong post-zygotic barrier. We show that egg-laying and brooding snails are closely related, but genetically distinct. Genotyping of 3092 snails from three locations failed to recover any recent hybrid or backcrossed individuals, confirming that RI is strong. There was, however, evidence for a very low level of asymmetrical introgression, suggesting that isolation remains incomplete. The presence of strong, asymmetrical RI was further supported by demographic analysis of these populations. Although the taxa are currently broadly sympatric, demographic modelling suggests that they initially diverged during a short period of geographical separation involving very low gene flow. Our study suggests that some geographical separation may kick-start the evolution of strong RI, facilitating subsequent coexistence of taxa in sympatry. The strength of RI needed to achieve sympatry and the subsequent effect of sympatry on RI remain open questions. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Assuntos
Fluxo Gênico , Especiação Genética , Isolamento Reprodutivo , Caramujos/fisiologia , Simpatria , Animais , Inglaterra , França , Caramujos/genética , País de Gales
6.
J Evol Biol ; 33(3): 342-351, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31724256

RESUMO

Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis, divergent selection forms strong barriers to gene flow, while the role of post-zygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Post-zygotic barriers might include genetic incompatibilities (e.g. Dobzhansky-Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1,011 embryos (mean 130 ± 123), and abortion rates varied between 0% and 100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterized female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index, and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant post-zygotic barriers contributing to ecotype divergence, and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females.


Assuntos
Fluxo Gênico , Caramujos/genética , Animais , Tamanho da Ninhada/genética , Ecótipo , Perda do Embrião/genética , Feminino , Heterozigoto , Suécia
7.
Genomics ; 110(6): 399-403, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29665418

RESUMO

The wrasses (Labridae) are one of the most successful and species-rich families of the Perciformes order of teleost fish. Its members display great morphological diversity, and occupy distinct trophic levels in coastal waters and coral reefs. The cleaning behaviour displayed by some wrasses, such as corkwing wrasse (Symphodus melops), is of particular interest for the salmon aquaculture industry to combat and control sea lice infestation as an alternative to chemicals and pharmaceuticals. There are still few genome assemblies available within this fish family for comparative and functional studies, despite the rapid increase in genome resources generated during the past years. Here, we present a highly continuous genome assembly of the corkwing wrasse using PacBio SMRT sequencing (x28.8) followed by error correction with paired-end Illumina data (x132.9). The present genome assembly consists of 5040 contigs (N50 = 461,652 bp) and a total size of 614 Mbp, of which 8.5% of the genome sequence encode known repeated elements. The genome assembly covers 94.21% of highly conserved genes across ray-finned fish species. We find evidence for increased copy numbers specific for corkwing wrasse possibly highlighting diversification and adaptive processes in gene families including N-linked glycosylation (ST8SIA6) and stress response kinases (HIPK1). By comparative analyses, we discover that de novo repeats, often not properly investigated during genome annotation, encode hundreds of immune-related genes. This new genomic resource, together with the ballan wrasse (Labrus bergylta), will allow for in-depth comparative genomics as well as population genetic analyses for the understudied wrasses.


Assuntos
Genética Populacional , Genoma , Perciformes/genética , Animais , Masculino , Análise de Sequência de DNA
8.
PLoS One ; 13(2): e0192036, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29408893

RESUMO

Climate change research is advancing to more complex and more comprehensive studies that include long-term experiments, multiple life-history stages, multi-population, and multi-trait approaches. We used a population of the barnacle Balanus improvisus known to be sensitive to short-term acidification to determine its potential for long-term acclimation to acidification. We reared laboratory-bred individuals (as singles or pairs), and field-collected assemblages of barnacles, at pH 8.1 and 7.5 (≈ 400 and 1600 µatm pCO2 respectively) for up to 16 months. Acidification caused strong mortality and reduced growth rates. Acidification suppressed respiration rates and induced a higher feeding activity of barnacles after 6 months, but this suppression of respiration rate was absent after 15 months. Laboratory-bred barnacles developed mature gonads only when they were held in pairs, but nonetheless failed to produce fertilized embryos. Field-collected barnacles reared in the laboratory for 8 months at the same pH's developed mature gonads, but only those in pH 8.1 produced viable embryos and larvae. Because survivors of long-term acidification were not capable of reproducing, this demonstrates that B. improvisus can only partially acclimate to long-term acidification. This represents a clear and significant bottleneck in the ontogeny of this barnacle population that may limit its potential to persist in a future ocean.


Assuntos
Ácidos/química , Invertebrados/fisiologia , Biologia Marinha , Animais , Mudança Climática , Reprodução
9.
PLoS One ; 11(8): e0161266, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525655

RESUMO

Closely related taxa provide significant case studies for understanding evolution of new species but may simultaneously challenge species identification and definition. In the Baltic Sea, two dominant and perennial brown algae share a very recent ancestry. Fucus vesiculosus invaded this recently formed postglacial sea 8000 years ago and shortly thereafter Fucus radicans diverged from this lineage as an endemic species. In the Baltic Sea both species reproduce sexually but also recruit fully fertile new individuals by asexual fragmentation. Earlier studies have shown local differences in morphology and genetics between the two taxa in the northern and western Bothnian Sea, and around the island of Saaremaa in Estonia, but geographic patterns seem in conflict with a single origin of F. radicans. To investigate the relationship between northern and Estonian distributions, we analysed the genetic variation using 9 microsatellite loci in populations from eastern Bothnian Sea, Archipelago Sea and the Gulf of Finland. These populations are located in between earlier studied populations. However, instead of bridging the disparate genetic gap between N-W Bothnian Sea and Estonia, as expected from a simple isolation-by-distance model, the new populations substantially increased overall genetic diversity and showed to be strongly divergent from the two earlier analysed regions, showing signs of additional distinct populations. Contrasting earlier findings of increased asexual recruitment in low salinity in the Bothnian Sea, we found high levels of sexual reproduction in some of the Gulf of Finland populations that inhabit extremely low salinity. The new data generated in this study supports the earlier conclusion of two reproductively isolated but very closely related species. However, the new results also add considerable genetic and morphological complexity within species. This makes species separation at geographic scales more demanding and suggests a need for more comprehensive approaches to further disentangle the intriguing relationship and history of the Baltic Sea fucoids.


Assuntos
Fucus/genética , Variação Genética , Oceanos e Mares , Europa (Continente) , Fucus/classificação , Frequência do Gene , Genótipo , Repetições de Microssatélites/genética , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...