Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(37): 86762-86772, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37414993

RESUMO

Even if dermal exposure to metal(loid)s from contaminated soils has received less attention than oral and inhalation exposure, the human health risk can be significant for some contaminants and exposure scenarios. The purpose of this study was to assess the influence of sebum proportion (1% v/v and 3% v/v) in two synthetic sweat formulations (EN 1811, pH 6.5 (sweat A) and NIHS 96-10, pH 4.7 (sweat B)) on As, Cr, Cu, Ni, Pb, and Zn dermal bioaccessibility and on subsequent diffusion through synthetic skin. A Franz cell with a Strat-M® membrane was used to quantify permeation parameters of bioaccessible metal(loid)s. Sebum's presence in synthetic sweat formulations significantly modified bioaccessibility percentages for As, Cr, and Cu. However, sebum proportion in both sweats did not influence the bioaccessibility of Pb and Zn. Some metal(loid)s, namely As and Cu, permeated the synthetic skin membrane during permeation tests when sebum was added to sweat while no permeation was observed without sebum in sweat formulations. Depending on sweat formulation, the addition of sebum (1% v/v) increased or decreased the Cr permeation coefficients (Kp). In all cases, bioaccessible Cr was no longer permeable when extracted with 3% sebum. Ni transdermal permeation was not influenced by the presence of sebum, and no permeation was observed for Pb and Zn. Further studies on the speciation of metal(loid)s in bioaccessible extracts in the presence of sebum are recommended.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Suor/química , Monitoramento Ambiental , Chumbo , Sebo/química , Poluentes do Solo/análise , Solo , Metais Pesados/análise , Medição de Risco
2.
J Hazard Mater ; 455: 131523, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150097

RESUMO

Dermal exposure to metal(loid)s from contaminated soils can contribute to health risk. Metal(loid) speciation will influence their bioaccessibility in sweat and subsequent permeation across the skin. Therefore, the speciation of the bioaccessible fraction of metal(loid)s in two synthetic sweat formulations (sweat A (pH 6.5) and B (pH 4.7)) was assessed using chemical equilibrium modelling (Visual MINTEQ). Permeation through synthetic skin and the influence of sebum in the permeation of As, Cr, Cu, Ni, Pb, and Zn were also investigated using Franz cells. Following dermal bioaccessibility tests for five Chromated Copper Arsenate (CCA)-contaminated soils and one certified soil (SQC001), mean metal(loid) bioaccessibility (%) was higher in sweat B (2.33-18.8) compared to sweat A (0.12-7.53). Arsenic was almost entirely found as As(V) in both sweats. In sweat A, comparable concentrations of Cr(III) and Cr(VI) were found whereas in sweat B, Cr was primarily present as Cr(III). Copper was primarily found as Cu2+. Bioaccessible Cr extracted from nearly all soils permeated through the Strat-M membrane when it was coated with sebum. The Cr permeation coefficient (Kp) ranged between 0.004 and 0.13 cm/h and the Kp for Cu was higher (0.024-0.52 cm/h). As, Ni, Pb, and Zn did not permeate the synthetic skin.


Assuntos
Exposição Ambiental , Metais Pesados , Pele Artificial , Poluentes do Solo , Arsênio/análise , Monitoramento Ambiental , Poluição Ambiental , Chumbo , Medição de Risco , Solo , Poluentes do Solo/análise
3.
Heliyon ; 9(3): e14495, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950607

RESUMO

Electronic cigarettes are generally recognized as a safer alternative than conventional cigarettes. Nevertheless, previous research suggests metal (loid) leaching due to coil contact, potentially transferring to the e-liquid and its aerosolized form. In this study, Cr, Cd, Ni, and Pb levels were measured by inductively coupled plasma mass spectrometry (ICP-MS) on 17 samples of e-liquids with different chemical properties (e.g., pH, nicotine content, flavoring, free-base, and nicotine salts). Twelve e-liquids were then put in contact with 36-gauge Kanthal A-1, Nichrome 80, Stainless steel 317 L and disposable coils such as Juul, and Aspire BVC for three days at 200-250 °C for 1 h each day. Metal levels expressed as mean (standard deviation) metal concentration, were below detection (Cd) to very low in bottle samples (Ni ≤ 76 (18); Pb ≤ 16 (1.5); and Cr ≤ 386 (15.6) µg/kg). In the coil extracts, varying concentrations of the same metal (loid) were found, indicating that metal leaching capacity may differ per sample. All samples contained Ni and Cr, followed by Pb to a much lesser extent. Cd levels were mostly below detection limits. Coil + e-liquid combinations with the highest Ni, Cr, and Pb concentrations were: Aspire BVC + Melon 0 mg/mL: Ni = 1.22 E+04 (281); Aspire BVC + Hit Nicotine 40 mg/mL: Cr = 864 (116); and Nichrome 80 + Melon 0 mg/mL: Pb = 56 (5) µg/kg. Overall, results suggest that nicotine salts at 40 mg/mL enhance Cr and Ni transfer. Stainless steel 317 L released very low metal concentrations. A conservative screening level risk characterization showed that 10.5% and 3.5% of the coil extracts may exceed Ni and Cr (III) safe concentrations, respectively. In the aerosol phase, 8.8% of samples might be above Ni equivalent daily dose for chronic exposure and 1.8% for intermediate exposure. Further studies on coil metal leaching could aid in establishing coil manufacturing regulations.

4.
Ecotoxicol Environ Saf ; 249: 114446, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321665

RESUMO

Exposure to potentially toxic metal(loid)s (PTMs) in soil may happen via ingestion, inhalation, and dermal pathway. A more accurate risk characterization should consider PTM bioavailability. Using ten soil samples collected in the Montreal area (Canada) near CCA-treated utility poles, this study aims to characterize non-carcinogenic and carcinogenic human health risks associated with As, Cr, Cu, Pb, and Zn through a multi-pathway exposure approach. This innovative study incorporates, for the first time, the bioaccessible fraction of the metal(loid)s for three exposure routes and two different scenarios. For the residential and industrial scenarios, the oral and dermal pathways yielded a hazard index (HI) much higher than 1 with and without bioaccessibility considerations (range 1.7 - 349 without bioaccessibility and 0.8-134 with bioaccessibility), whereas the inhalation pathway caused a lower hazard (HI < 1). For the dermal pathway, the hazard quotient was higher when bioaccessibility of field-collected samples was considered due to inherent assumptions from the US EPA soil approach to calculate the dermal dose. For carcinogenic risk, As and Pb were the most significant contributors to risk for the oral pathway, followed by the same elements for the dermal pathway. The overall carcinogenic risk was higher than the acceptable risk ( > 10-4) with and without bioaccessibility considerations (range 1.9E-4 - 9.6E-3 without bioaccessibility and 6.8E-5 - 3.8E-3 with bioaccessibility). Bioaccessibility tests provide a more accurate assessment of exposure to PTMs compared to total concentrations in soils.


Assuntos
Arseniatos , Metais Pesados , Poluentes do Solo , Humanos , Monitoramento Ambiental , Chumbo , Poluentes do Solo/análise , Carcinógenos , Solo , Medição de Risco , Metais Pesados/análise
5.
Environ Sci Technol ; 55(12): 8215-8222, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34039002

RESUMO

Dermal exposure to metal(loid)s from contaminated soils has received less attention than oral and inhalation exposure. Still, it can be a relevant pathway for some contaminants. Comparison of synthetic sweats (donor solutions), the influence of sebum, and the characterization of diffusion parameters through a synthetic membrane (acting as skin surrogate) in the permeation of metal(loid)s (As, Cr, Cu, Ni, Pb, and, Zn) from polluted soils is missing. The dermal bioaccessibility tests were performed using two sweat compositions [EN 1811, pH 6.5 (sweat A) and NIHS 96-10, pH 4.7 (sweat B)]. Diffusion parameters of soluble metal(loid)s using the Franz cell methodology were calculated using the Strat-M membrane. The influence of synthetic sebum in the permeation of metal(loid)s was also investigated. The metal(loid) bioaccessibility percentage was higher for sweat B (pH 4.7) compared to sweat A (pH 6.5), attributed to lower pH of sweat B. Among the six elements tested, only chromium and copper permeated the membrane. Permeation coefficient (Kp) was higher for chromium in sweat A (0.05-0.11 cm h-1) than sweat B (0.0007-0.0037 cm h-1) likely due to a higher pH and thus more permeable Cr species. The presence of sebum increased lag times for copper permeation. Additional studies regarding speciation of metal(loid)s following extractions in synthetic sweat and comparison of synthetic membrane Strat-M and human skin in the permeation of metal(loid)s are recommended.


Assuntos
Pele Artificial , Suor , Monitoramento Ambiental , Humanos , Sebo , Solo
6.
Environ Sci Pollut Res Int ; 28(12): 14854-14866, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33219931

RESUMO

The effectiveness of compost, peat-calcite, and wood ash to remove Ni from a circum-neutral-contaminated mine water was tested in continuous flow experiments. Materials were compared in 4.8-L columns at hydraulic residence times (HRT) of ∼ 16.5 h over the course of 2.5-4 months. During this period, all columns successfully treated over 400 L of synthetic contaminated neutral drainage (4.05 mg/L Ni), mainly through sorption processes. Mid-column results (HRT ∼ 9 h) indicated that wood ash was the most effective material for Ni removal, and chemical extractions revealed that retained Ni was less mobile in this spent material. The pH-increasing properties of wood ash played a major role in this material's performance, but a pH correction would be required in the initial stages of full-scale treatment to maintain the effluent within regulatory limits (6-9.5). Scaled to full-sized, mid-column results indicated that treatment cell sizes, designed for the 1-year treatment of a high discharge (10 m3/h)-contaminated effluent (4.05 mg/L Ni), would be the smallest with wood ash (< 500 m3), followed by compost (600 ± 140 m3) and peat-calcite (720 ± 50 m3).


Assuntos
Compostagem , Poluentes Químicos da Água , Carbonato de Cálcio , Níquel , Solo , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 734: 139412, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464400

RESUMO

Soil samples adjacent to ten CCA-treated utility poles were collected, sieved into four fractions (<2 mm, 250-90 µm, 90-20 µm and <20 µm), and characterized for their total metal(loid) (As, Cu, Cr, Pb, and Zn) content and physico-chemical properties. Oral bioaccessibility tests were performed using In Vitro Gastrointestinal (IVG) method for fractions 250-90 µm and 90-20 µm. Inhalation bioaccessibility tests were performed in particle size fraction <20 µm using two simulated lung fluids: artificial lysosomal fluid (ALF) and Gamble's solution (GS). The total concentration of metal(loid)s increased with decreasing particle size. Oral As bioaccessibility (%) increased with increasing particle size in 9 out of 10 soils (p < .05), but oral As bioaccessibility expressed in mg/kg was not significantly different for both particle size. Oral Cu bioaccessibility (% and mg/kg) was not influenced by particle size, but oral Cr bioaccessibility (% and mg/kg) increased when reducing particle size (p < .05), although Cr bioaccessibility was very low (< 8%). Oral bioaccessibility (%) of metal(loid)s decreased in the order: Cu > As > Pb > Zn > Cr. Bioaccessibility (%) in simulated lung fluids decreased in the order: Cu > Zn > As > Pb ≈ Cr using ALF, and As > Cu using GS solution. For all elements, inhalation bioaccessibility (% and mg/kg) using ALF was higher than oral bioaccessibility, except for Pb bioaccessibility (mg/kg) in two samples. However, solubility of metal(loid)s in GS presented the lowest values. Copper showed the highest oral and inhalation bioaccessibility (%) and Cr showed the lowest. Moreover, organic matter content and cation exchange capacity in particle size 90-20 µm were negatively correlated with Cu and Pb oral bioaccessibility (%).


Assuntos
Solo/química , Arseniatos , Disponibilidade Biológica , Monitoramento Ambiental , Metais , Tamanho da Partícula , Poluentes do Solo
8.
Environ Sci Pollut Res Int ; 27(8): 8418-8430, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31902074

RESUMO

Treatment efficiency of iron-rich acid mine drainage (AMD; pH 3, and 2 and 4 g/L Fe) was tested in a laboratory tri-unit pilot-scale reactor (2.65 m3) for 1 year. The first unit consisted of a passive biochemical reactor (PBR1), filled with reactive mixture (50% of manure, sawdust, maple chips, compost, urea, sediment, and sand; 50% of calcite), with the aim to neutralize acidity and to partially remove metals. The second unit contained wood ash and acted as neutralizer and iron retention filter (by sorption and precipitation). The last unit was a second polishing PBR2, filled with reactive mixture (98% of manure, sawdust, maple chips, compost, urea, sediment, and sand; 2% of calcite), which aim was to remove the residual metals. The results showed that pH increased to about 6 and redox potential decreased significantly (from 550 mV to -100 mV). Iron, the most challenging metal in the AMD, decreased from 4 g/L (the highest tested concentration) to approximately 100 mg/L. The performance of the multistep treatment system was controlled by the capacity of the wood ash to immobilize iron.


Assuntos
Ácidos/química , Ferro , Metais/química , Poluentes Químicos da Água , Concentração de Íons de Hidrogênio , Mineração
9.
Chemosphere ; 238: 124557, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31422311

RESUMO

Field-collected chromated copper arsenate (CCA)-contaminated soils and associated particulate matter (PM) were characterized for their total metal(loid)s content (As, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and physicochemical properties. Copper, Ni, Pb and Zn fractionation (using sequential extraction) and inhalation bioaccessibility (using two lung fluids) of trace elements were assessed in PM samples. In Gamble's solution (GS), low average bioaccessibility (up to 12%) was observed for As, Cu, Mn, and Ni. A strong correlation (r = 0.92, p < 0.005, n = 9) between the soluble and exchangeable fraction (F1) and bioaccessibility in GS was observed for Cu. Inhalation bioaccessibility in artificial lysosomal fluid (ALF) was higher for Cu (avg. 78.5 ± 4.2%), Mn (avg. 56.8 ± 12.1%), Zn (avg. 54.8 ± 24.5%) and As (avg. 45.4 ± 18.8%). Strong correlations between inhalation bioaccessibility in ALF and the mobile (i.e. F1+F2) metal fraction were observed for all tested metals (i.e. (Cu (r = 0.95, p < 0.005), Ni (r = 0.79, p < 0.05), Pb (r = 0.92, p < 0.005) and Zn (r = 0.98, p < 0.005)), n = 9). The oxidative potential (OP) of PM was also assessed using an ascorbate (AA) depletion assay (OPAA). Mobile Cu fractions were deemed to be the main factor influencing OPAA ((F1 (r = 0.99, p < 0.005), F2 (r = 0.97, p < 0.005)), n = 9) in PM samples. A strong correlation (r = 0.94, p < 0.005, n = 10) was also observed between Cu bioaccessibility in GS and OPAA.


Assuntos
Arseniatos/análise , Poluição Ambiental/análise , Pulmão/metabolismo , Metais/análise , Material Particulado/análise , Poluentes do Solo/análise , Solo/química , Arseniatos/química , Monitoramento Ambiental , Humanos , Oxirredução , Material Particulado/química
10.
Chemosphere ; 243: 125303, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31760288

RESUMO

Passive biochemical reactors (PBRs) represent a promising option for the treatment of mine drainage. In this study, the influence of temperature (22 and 5 °C), salinity (0 and 20 g/L) and hydraulic retention time (HRT) on the efficiency of PBRs for the treatment of acidic and neutral mine drainage (AMD and NMD) was evaluated. To do so, eight 11 L PBRs were set-up and operated with vertically upward flow. Synthetic AMD and NMD, with two salinities (0 and 20 g/L), were tested at ambient temperature (22 ±â€¯0.5 °C) during the first 3 months, then at low temperature (5 ±â€¯1 °C), for 5 additional months. The HRT tested was 0.5 and 1 day, for NMD, and 2.5 and 5 days, for AMD. Results showed a consistent efficiency, above 65%, with higher HRTs (1 vs. 0.5 day for NMD and 5 vs. 2.5 for AMD). At room temperature, metals and sulfate removal was better for non-saline synthetic effluents (>99% vs 95% for Cu, 99% vs >74% for Ni, 90% vs 75% for Fe, and <99% vs <96% for SO42-), after 3 months. At 5 °C, removal efficiency decreased especially for Ni, from 99% to 74%, for both mine drainage qualities. However, sulfate removal was found to be better in saline AMD (<40% vs <10%). The simultaneous effect of low temperature and high salinity further decreased PBR performance. Although higher HRTs entailed better removal efficiency, hydraulic problems such as decreases in permeability of the reactive mixture may still lead to inhibition of long-term PBR efficiency.


Assuntos
Reatores Biológicos/normas , Salinidade , Temperatura , Poluentes Químicos da Água/isolamento & purificação , Temperatura Baixa , Concentração de Íons de Hidrogênio , Metais/isolamento & purificação , Mineração , Sulfatos/isolamento & purificação , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 692: 595-601, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539967

RESUMO

Dermal exposure to metals has previously received less attention than oral/inhalation exposure. Nonetheless, human health risk is significant for certain contaminants and exposure scenarios. The present study aims to (1) characterize two certified reference soils (SQC001, BGS 102); and (2) assess Cr, Ni, Pb, and Zn dermal bioaccessibility via in vitro assays using three synthetic sweat formulations (EN 1811, pH 6.5 (Sweat A), NIHS 96-10, pH 4.7 (Sweat B), and a more complex pH 5.5 formulation containing amino acids (Sweat C)) and two sebum formulations. Metals bioaccessibility in sweat followed Sweat B > Sweat C > Sweat A, attributed to sweat B lower pH. Dermal bioaccessibility in both sebum formulations was lower than 1% for Ni and Pb and below 9% for Cr and Zn, possibly due to low affinity of metals for non-polar lipids. It must be noted that bioaccessible Zn in BGS 102 was higher when extracted with synthetic sebum compared to any of the synthetic sweat formulations. Metal bioaccessibility in sweat was considerably higher for SQC001 (up to 76.6% for Zn using Sweat B) than for BGS 102 (ranging between 0.02 and 1.3% for all elements and all sweat formulations), attributed to higher pH, higher organic carbon, and higher cation exchange capacity of reference soil BGS 102. Sebum formulations spiked with metals generally entailed low metal recovery (except for Zn), which may explain overall low bioaccessibility values for sebum. Sebum and sweat formulation, and soil properties seem to control in vitro dermal bioaccessibility of metals.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Disponibilidade Biológica , Pele Artificial
12.
Chemosphere ; 236: 124307, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31330432

RESUMO

A geochemical model was established to predict the chemical and hydraulic performances of MgO columns used to treat a nickel- and cobalt-contaminated groundwater. Using the PHREEQC software, an advection-reaction simulation was carried out to re-create the outlet concentrations observed during a previous axial column laboratory test. Reaction kinetics were introduced to calculate the rates of brucite dissolution as well as iron and manganese oxidation. Pore volume diminution during the test was also predicted using the volume of goethite precipitates generated. The floating-sphere model was applied to calculate the equivalent hydraulic conductivity (Keq) of the column. The geometry of the model's cells was then adjusted to represent a radial centripetal filter containing the same amount of reactive MgO. The Keq predictions for the centripetal filter showed that the loss of permeability in the filter could be significantly delayed by changing the filter's flow configuration. While those results are promising, further testing is necessary to provide additional experimental results for radial filters.


Assuntos
Água Subterrânea/química , Óxido de Magnésio/uso terapêutico , Poluentes Químicos da Água/química , Óxido de Magnésio/farmacologia
13.
Environ Sci Pollut Res Int ; 26(15): 15314-15323, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30927225

RESUMO

In the context of improving permeable reactive barrier (PRB) filters, axial and a centripetal column tests were performed to compare their evolution in terms of chemical and hydraulic performances. For both tests, the MgO reactive media, made of crushed (< 10 mm) spent MgO-C refractory bricks was used to treat water contaminated with Co and Ni by raising the pH and promoting hydroxide precipitation. As opposed to the traditional cylindrical axial configuration, the centripetal column consists of an annulus of reactive media through which the water flows from the outer radius towards the inner radius. Under similar conditions (total reactive mass, porosity), the centripetal column is expected to delay the breakthrough of contaminants because of its higher cross-section and lower flow speeds at the entrance of the media. However, as we found in this study, the design of a granular radial filter poses several technical problems. Indeed, a breakthrough of the contaminants, accompanied by a decline in pH, was observed much sooner in the centripetal (100 pv) than in the axial (375 pv) filter. This lower performance was deemed to be due to a hydraulic shortcut and was supported by the results of a tracer test (average renewal volume much lower (199 ml) than the theoretical one (7530 ml)) as well as the observation of preferential clogging upon dismounting the radial filter. While the design of a filter that induces a purely radial flow still poses a technical challenge, this study contributes to advance the knowledge for centripetal radial filtration of groundwater in PRBs.


Assuntos
Filtração/instrumentação , Filtração/métodos , Água Subterrânea/química , Óxido de Magnésio , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Hidróxidos/química , Porosidade , Reciclagem , Poluição da Água/prevenção & controle , Purificação da Água/instrumentação
14.
Environ Sci Pollut Res Int ; 26(9): 9322-9332, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30721440

RESUMO

Performance of raw and two Fe-loaded biochars, produced either by evaporation (E-product, 26.9% Fe) or precipitation (P-product, 12.6% Fe), was evaluated in batch and column testing for As(V) and Sb(III) removal from contaminated neutral drainage (CND). Batch testing results showed that sorption capacity of the E-product tripled for As(V) and quintupled for Sb(III), whereas for the P-product, it doubled for both contaminants, relative to the raw biochar. Moreover, As(V) removal by the E-product reached 90% in less than 8 h, for initial concentrations up to 50 mg/L. In column testing, the E-product efficiently treated the influent [pH 6; 1 mg/L As(V)] for more than 286 days. The pH of the final effluent was within the legally allowed limits (6-9.5) while less than 0.3 mg/L Fe leached out. Based on these findings, Fe-loaded biochar by evaporation (E-product) seems promising for As(V) treatment in CND.


Assuntos
Antimônio/análise , Arsênio/análise , Carvão Vegetal/química , Adsorção , Antimônio/química , Arsênio/química , Ferro/química
16.
Environ Sci Pollut Res Int ; 25(23): 23205-23214, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29862480

RESUMO

Spent magnesia (MgO)-carbon refractory bricks were repurposed as a permeable reactive barrier reactive media to treat a nickel (5 mg l-1)- and cobalt (0.3 mg l-1)-contaminated groundwater. MgO has been used for decades as a heavy metal precipitating agent as it hydrates and buffers the pH in a range of 8.5-10 associated with the minimum solubility of various divalent metals. The contaminated groundwater site's conditions are typical of contaminated neutral drainage with a pH of 6 as well as high concentrations of iron (220 mg l-1) and sulphates (2500 mg l-1). Using synthetic contaminated water, batch and small-scale column tests were performed to determine the treatment efficiency and longevity. The increase and stabilization of the pH at 10 observed during the tests are associated with the hydration and dissolution of the MgO and promoted the removal not only of a significant proportion of the contaminants but also of iron. During the column test, this accumulation of precipitates over time clogged and passivated the MgO resulting in a loss of chemical performance (pH lowering, metal breakthrough) after 210 pore volumes of filtration. Precipitation also affected the hydraulic conductivity values which dropped from 2.3·10-3 to 4.2·10-4 m s-1 at the end of test. Saturation indices and XRD analyses suggest the precipitates formed are likely composed of goethite as well as iron, cobalt and nickel hydroxides. Recycled MgO-C refractory bricks were demonstrated to be an efficient reactive material for the removal of Co and Ni, but careful considerations should be taken of the potential clogging and passivation phenomena given particular physicochemical conditions.


Assuntos
Cobalto/isolamento & purificação , Óxido de Magnésio/química , Níquel/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Carbono/química , Água Subterrânea , Hidróxidos , Ferro , Metais Pesados , Sulfatos , Poluição da Água
17.
Environ Sci Pollut Res Int ; 25(18): 17575-17589, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29667051

RESUMO

Multi-step passive systems for the treatment of iron-rich acid mine drainage (Fe-rich AMD) perform satisfactorily at the laboratory scale. However, their field-scale application has revealed dissimilarities in performance, particularly with respect to hydraulic parameters. In this study, the assessment of factors potentially responsible for the variations in performance of laboratory and field-scale multi-step systems was undertaken. Three laboratory multi-step treatment scenarios, involving a combination of dispersed alkaline substrate (DAS) units, anoxic dolomitic drains, and passive biochemical reactors (PBRs), were set up in 10.7-L columns. The field-scale treatment consisted of two PBRs separated by a wood ash (WA) reactor. The parameters identified as possibly influencing the performances of the laboratory and field-scale experiments were the following: AMD chemistry (electrical conductivity and Fe and SO42- concentrations), flow rate (Q), and saturated hydraulic conductivity (ksat). Based on these findings, the design of an efficient passive multi-step treatment system is suggested to consider the following: (1) Fe pretreatment, using materials with high ksat and low HRT. If a PBR is to be used, the Fe load should be < 26 g/m3 substrate/day (Fe < 200 mg/L) and SO42- < 110 g/m3 substrate/day; (2) PBR/DAS filled with a mixture with at least 20% of neutralizing agent; (3) include Q and ksat (> 10-3 cm/s) in the long-term prediction. Finally, mesocosm testing is strongly recommended prior to construction of full-scale systems for the treatment of Fe-rich AMD.


Assuntos
Ácidos/química , Carbonato de Cálcio/química , Ferro/química , Magnésio/química , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Mineração
18.
J Environ Manage ; 212: 142-159, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29428649

RESUMO

Circumneutral surface water and groundwater can contain hazardous concentrations of metals and metalloids that can threaten organisms in surrounding ecosystems. Extensive research has been conducted over the past two decades to prevent, limit, and treat water pollution. Among the currently available treatment options is the use of natural and residual materials, which is generally regarded as effective and inexpensive. The modification of such materials enhances the removal capacity of metals and metalloids, as well as the physical and chemical stability of the materials and resulting sludge (after treatment). This paper reviews several modified materials that have produced and evaluated in the past twenty years to treat various contaminants in water under specific conditions. Important factors on performance improvement following the modifications are emphasized. Sorption capacity and kinetics, and element removal mechanisms are also discussed. Element recovery, material regeneration, water reuse, evaluation of treatment efficiency for real effluents are also considered, as well as the applicability of these materials in both active and passive treatment systems. Modified natural and residual materials are a promising option for the treatment of metals and metalloids in circumneutral contaminated waters. However, further research is necessary to evaluate their field-scale performance and to properly assess treatment costs.


Assuntos
Metaloides , Poluentes Químicos da Água , Metais , Esgotos , Purificação da Água
19.
Chemosphere ; 197: 42-49, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29331717

RESUMO

Dermal exposure to contaminated sites has generally received less attention than oral/inhalation exposure due to limited exposure scenarios and less perceived potential for toxicity, however, the risk can be significant for specific contaminants and scenarios. The present study aims to (1) measure Cr, Ni, Pb, and Zn contamination in soil and mine tailings samples (n = 7), (2) determine the dermal bioaccessibility of these metals via in vitro tests using two synthetic sweat formulations (EN 1811; NIHS 96-10), and (3) obtain dermal absorbed doses (DADs) for children's and adults' exposure scenarios and compare them to derived dermal reference values. The NIHS 96-10 formulation yielded higher bioaccessibility values for all metals than EN 1811, possibly due to its lower pH. Zn had the highest bioaccessibility for both formulations whereas Cr had the lowest. There was some evidence of adsorption of initially mobilized Pb and Zn to soil with longer test times, resulting in slightly lower bioaccessibility after 8 h of testing with respect to 2 h. The calculated DADs showed that the risk for exposure was acceptable (DAD < derived dermal reference value) for all metals except for Cr(VI) considering exposure to two of the samples. The risk in the case of children's exposure scenario (play on contaminated medium) was significantly higher than the case for the adults' exposure scenario (exposure in industrial context). Additional bioaccessibility research is recommended on additional samples with differing properties/contamination profiles, on additional contaminants with high dermal affinity (especially As), and on the development/validation of in vitro dermal bioaccessibility tests.


Assuntos
Exposição Ambiental/análise , Metais/análise , Poluentes do Solo/análise , Adulto , Criança , Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental/métodos , Poluição Ambiental/estatística & dados numéricos , Humanos , Metais Pesados/análise , Mineração , Medição de Risco/métodos , Solo/química
20.
Environ Sci Pollut Res Int ; 25(8): 7823-7833, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29294236

RESUMO

This study evaluates different methods to determine points of zero charge (PZCs) on five organic materials, namely maple sawdust, wood ash, peat moss, compost, and brown algae, used for the passive treatment of contaminated neutral drainage effluents. The PZC provides important information about metal sorption mechanisms. Three methods were used: (1) the salt addition method, measuring the PZC; (2) the zeta potential method, measuring the isoelectric point (IEP); (3) the ion adsorption method, measuring the point of zero net charge (PZNC). Natural kaolinite and synthetic goethite were also tested with both the salt addition and the ion adsorption methods in order to validate experimental protocols. Results obtained from the salt addition method in 0.05 M NaNO3 were the following: 4.72 ± 0.06 (maple sawdust), 9.50 ± 0.07 (wood ash), 3.42 ± 0.03 (peat moss), 7.68 ± 0.01 (green compost), and 6.06 ± 0.11 (brown algae). Both the ion adsorption and the zeta potential methods failed to give points of zero charge for these substrates. The PZC of kaolinite (3.01 ± 0.03) was similar to the PZNC (2.9-3.4) and fell within the range of values reported in the literature (2.7-4.1). As for the goethite, the PZC (10.9 ± 0.05) was slightly higher than the PZNC (9.0-9.4). The salt addition method has been found appropriate and convenient to determine the PZC of natural organic substrates.


Assuntos
Química Verde/métodos , Ponto Isoelétrico , Metais/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Adsorção , Compostos de Ferro/química , Caulim/química , Metais/química , Minerais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...