Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Diabetes ; 41(6): 603-612, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28549669

RESUMO

OBJECTIVES: Clinical practice guidelines (CPG) provide evidence-based recommendations for patient care but may not be optimally applied in clinical settings. As a pilot study, we evaluated the impact of a computerized, point-of-care decision support system (CDSS) on guideline knowledge and adherence in our diabetes clinic. METHODS: iSCREEN, a CDSS, integrated with a province-wide electronic health record, was designed based on the Canadian Diabetes Association 2013 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada. Evaluation data were gathered by retrospective chart review and clinician questionnaire prior to and after implementation of iSCREEN. Records of patients with type 1 diabetes, 14 to 18 years of age, were assessed for appropriate screening for complications and comorbidities. RESULTS: To assess guideline adherence, 50 charts were reviewed at 2 time periods (25 before and 25 after launch of iSCREEN). Results revealed improved frequency of appropriate screening for diabetic nephropathy (p=0.03) and retinopathy (p=0.04), accompanied by a decrease in under- and overscreening for these outcomes. To assess guideline knowledge, 58 surveys were collected (31 prior to and 27 after the launch of iSCREEN) from care providers in the field of pediatric diabetes. There was a trend toward improved guideline knowledge in all team members (p=0.06). CONCLUSIONS: Implementation of a de novo CDSS was associated with improved rates of appropriate screening for diabetes-related complications. A trend toward improvement in health professionals' knowledge of the guidelines was also observed. Evaluation of this point-of-care computerized decision support tool suggests that it may facilitate diabetes care by optimizing complication screening and CPG knowledge, with the potential for broader implementation.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico , Diagnóstico por Computador/normas , Registros Eletrônicos de Saúde/normas , Conhecimentos, Atitudes e Prática em Saúde , Sistemas Automatizados de Assistência Junto ao Leito/normas , Guias de Prática Clínica como Assunto/normas , Adolescente , Diabetes Mellitus Tipo 1/terapia , Diagnóstico por Computador/tendências , Registros Eletrônicos de Saúde/tendências , Feminino , Humanos , Masculino , Projetos Piloto , Sistemas Automatizados de Assistência Junto ao Leito/tendências , Estudos Retrospectivos
3.
Clin Dysmorphol ; 21(1): 48-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21934608

RESUMO

Blepharophimosis-ptosis-epicanthus inversus syndrome(BPES; OMIM110100) is a genetic disorder usually inherited in an autosomal dominant manner. Primarily, its diagnosis is based on four major features present at birth: short horizontal palpebral fissures (blepharophimosis), drooping of the eyelids (ptosis), a vertical fold of skin from the lower eyelid up either side of the nose (epicanthus inversus), and lateral displacement of the inner canthi with normal interpupillary distance(telecanthus; Oley and Baraitser, 1988). Two types of BPES are recognized: type I BPES includes the four major eyelid features and female infertility as a result of premature ovarian failure, whereas type II BPES consists only of eyelid abnormalities (Zlotogora et al., 1983). BPES is sometimes associated with developmental delay, but patients with BPES typically have a normal lifespan (Oley and Baraitser, 1988; Beysen et al., 2009). The clinical diagnosis of BPES is confirmed with demonstration of a FOXL2 mutation, subtle FOXL2 deletion or 3q23 microdeletion, or deletion of the FOXL2 regulatory region (Crisponi et al., 2001; De Baere et al., 2003; Beysen et al., 2005; D'haene et al., 2009). FOXL2, located at 3q23, is the only gene currently known to be associated with BPES (Beysen et al., 2009). It is possible to identify an underlying genetic defect in 88% of BPES cases diagnosed clinically (Beysen et al., 2009). Of the genetic defects found, approximately 81% are intragenic mutations of FOXL2, 10­12% are microdeletions of the gene or surrounding areas, and 5% are deletions in the regulatory areas (Beysen et al., 2009; D'haene et al., 2009,2010). In BPES-like patients (i.e. those displaying some,but not all four major features of BPES), other copy number changes can be detected in 33% of cases(Gijsbers et al., 2008). Patients with BPES carrying larger deletions encompassing FOXL2 present more frequently with associated clinical findings, such as mental retardation (D'haene et al., 2009). In this study, we present a child with BPES caused by a large interstitial deletion,3q22.3q23 (chr3:139 354 104­144 013 999)(hg18), which includes FOXL2. In addition to the classic features of BPES, he presents with an external genital anomaly,spastic diplegia, and speech delay.


Assuntos
Blefarofimose/genética , Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Fácies , Anormalidades da Pele/genética , Paralisia Cerebral , Pré-Escolar , Deficiências do Desenvolvimento/genética , Pálpebras/anormalidades , Proteína Forkhead Box L2 , Fatores de Transcrição Forkhead/genética , Genes Dominantes , Genitália Masculina/anormalidades , Humanos , Transtornos do Desenvolvimento da Linguagem/genética , Masculino
4.
PLoS One ; 5(5): e10652, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20498842

RESUMO

BACKGROUND: In vertebrates, Ran-Binding Protein in the Microtubule Organizing Center (RanBPM) appears to function as a scaffolding protein in a variety of signal transduction pathways. In Drosophila, RanBPM is implicated in the regulation of germ line stem cell (GSC) niche organization in the ovary. Here, we addressed the role of RanBPM in nervous system function in the context of Drosophila larval behavior. METHODOLOGY/PRINCIPAL FINDINGS: We report that in Drosophila, RanBPM is required for larval feeding, light-induced changes in locomotion, and viability. RanBPM is highly expressed in the Kenyon cells of the larval mushroom body (MB), a structure well studied for its role in associative learning in Drosophila and other insects. RanBPM mutants do not display major disruption in nervous system morphology besides reduced proliferation. Expression of the RanBPM gene in the Kenyon cells is sufficient to rescue all behavioral phenotypes. Through genetic epistasis experiments, we demonstrate that RanBPM participates with the Drosophila orthologue of the Fragile X Mental Retardation Protein (FMRP) in the development of neuromuscular junction (NMJ). CONCLUSIONS/SIGNIFICANCE: We demonstrate that the RanBPM gene functions in the MB neurons for larval behavior. Our results suggest a role for this gene in an FMRP-dependent process. Taken together our findings point to a novel role for the MB in larval behavior.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Comportamento Animal/fisiologia , Proteínas do Citoesqueleto/genética , Drosophila melanogaster/genética , Corpos Pedunculados/metabolismo , Proteínas Nucleares/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Comportamento Animal/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Proteínas do Citoesqueleto/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/efeitos da radiação , Comportamento Alimentar/efeitos da radiação , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Larva/efeitos da radiação , Luz , Locomoção/efeitos da radiação , Corpos Pedunculados/citologia , Corpos Pedunculados/efeitos da radiação , Mutação/genética , Junção Neuromuscular/citologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/efeitos da radiação , Neurônios/citologia , Neurônios/metabolismo , Neurônios/efeitos da radiação , Proteínas Nucleares/metabolismo , Fenótipo , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...