Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397088

RESUMO

In recent years, there has been a challenging interest in developing low-cost biopolymeric materials for wastewater treatment. In the present work, new adsorbents, based on different types of chitosan (commercial, commercial chitin-derived chitosan and chitosan synthesized from shrimp shell waste) and inorganic-organic composites have been evaluated for copper ions removal. The efficacy of the synthesis of chitosan-based composite beads has been determined by studying various characteristics using several techniques, including FTIR spectroscopy, X-ray diffraction, porosimetry (N2 adsorption), and scanning electron microscopy (SEM). Adsorption kinetics was performed using different adsorption models to determine the adsorption behavior of the materials in the aqueous media. For all composite beads, regardless of the type of chitosan used, good capacity to remove copper ions from simulated waters was observed (up to 17 mg/g), which proves that the new materials hold potential for heavy metal retention. However, the adsorption efficiency was influenced by the type of chitosan used. Thus, for the series where commercial chitosan (CC) was used, the removal efficiency was approximately 29%; for the series with chitosan obtained from commercial chitin (SC), the removal efficiency was approximately 34%; for the series with chitosan enriched with CaCO3 (SH), the removal efficiency was approximately 52%.


Assuntos
Quitosana , Poluentes Químicos da Água , Quitosana/química , Cobre , Concentração de Íons de Hidrogênio , Quitina/química , Adsorção , Água , Cinética , Íons , Poluentes Químicos da Água/análise
2.
Pharmaceutics ; 15(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37514079

RESUMO

This work focuses on the synergetic effect obtained by immobilization of Rhamnus frangula L. (RfL) phytoextract in layered double hydroxides (LDHs) matrixes and their subsequent encapsulation into biocompatible hydrogels (HG). In this respect, the LDHs were used as hosts for the immobilization of the phytoextract by a reconstruction method, after which the LDHsRfL were embedded into biocompatible hydrogel (HG) matrixes, based on polyethylene glycol diacrylate (PEGDA), by a radical polymerization reaction. The resulted biocompatible hydrogel composites were characterized by modern methods, while the swelling and rheology measurements revealed that the HG composites steadily improved as the content of RfL phytoextract immobilized on LDHs (LDHsRfL) increased. The following in vitro sustained release of the RfL phytoextract was highlighted by measurements at pH 6.8, in which case the composite HGs with LDHsRfL presented an improved release behavior over the LDHsRfL, thus, underlining the synergistic effect of PEGDA network and LDH particles on the slow-release behavior. The kinetic models used in the RfL release from composite HGs clearly indicate that the release is diffusion controlled in all the cases. The final composite HGs described here may find applications in the pharmaceutical field as devices for the controlled release of drugs.

3.
Polymers (Basel) ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447499

RESUMO

This work reports the construction of a bicomponent scaffold co-loaded with both a prodrug and a drug (BiFp@Ht) as an efficient platform for wound dressing, by combining the electrospinning and 3D-printing technologies. The outer component consisted of a chitosan/polyethylene oxide-electrospun membrane loaded with the indomethacin-polyethylene glycol-indomethacin prodrug (Fp) and served as a support for printing the inner component, a gelatin methacryloyl/sodium alginate hydrogel loaded with tetracycline hydrochloride (Ht). The different architectural characteristics of the electrospun and 3D-printed layers were very well highlighted in a morphological analysis performed by Scanning Electron Microscopy (SEM). In vitro release profile studies demonstrated that both Fp and Ht layers were capable to release the loaded therapeutics in a controlled and sustained manner. According to a quantitative in vitro biological assessment, the bicomponent BiFp@Ht scaffold showed a good biocompatibility and no cytotoxic effect on HeLa cell cultures, while the highest proliferation level was noted in the case of HeLa cells seeded onto an Fp nanofibrous membrane. Furthermore, the BiFp@Ht scaffold presented an excellent antimicrobial activity against the E. coli and S. aureus bacterial strains, along with promising anti-inflammatory and proangiogenic activities, proving its potential to be used for wound dressing.

4.
Gels ; 9(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367113

RESUMO

This present study describes the investigation of new promising hybrid cryogels able to retain high amounts of antibiotics, specifically penicillin G, using chitosan or chitosan-biocellulose blends along with a naturally occurring clay, i.e., kaolin. In order to evaluate and optimize the stability of cryogels, three types of chitosan were used in this study, as follows: (i) commercial chitosan; (ii) chitosan prepared in the laboratory from commercial chitin; and (iii) chitosan prepared in the laboratory from shrimp shells. Biocellulose and kaolin, previously functionalized with an organosilane, were also investigated in terms of their potential to improve the stability of cryogels during prolonged submergence under water. The organophilization and incorporation of the clay into the polymer matrix were confirmed by different characterization techniques (such as FTIR, TGA, SEM), while their stability in time underwater was investigated by swelling measurements. As final proof of their superabsorbent behavior, the cryogels were tested for antibiotic adsorption in batch experiments, in which case cryogels based on chitosan extracted from shrimp shells seem to exhibit excellent adsorption properties for penicillin G.

5.
Polymers (Basel) ; 15(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904332

RESUMO

The present work aims to study the influence of ammonium-quaternary monomers and chitosan, obtained from different sources, upon the effect of semi-interpenetrating polymer network (semi-IPN) hydrogels upon the removal of waterborne pathogens and bacteria from wastewater. To this end, the study was focused on using vinyl benzyl trimethylammonium chloride (VBTAC), a water-soluble monomer with known antibacterial properties, and mineral-enriched chitosan extracted from shrimp shells, to prepare the semi-IPNs. By using chitosan, which still contains the native minerals (mainly calcium carbonate), the study intends to justify that the stability and efficiency of the semi-IPN bactericidal devices can be modified and better improved. The new semi-IPNs were characterized for composition, thermal stability and morphology using well-known methods. Swelling degree (SD%) and the bactericidal effect assessed using molecular methods revealed that hydrogels made of chitosan derived from shrimp shell demonstrated the most competitive and promising potential for wastewater (WW) treatment.

6.
Gels ; 8(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421564

RESUMO

Chitosan is used in medicine, pharmaceuticals, cosmetics, agriculture, water treatment, and food due to its superior biocompatibility and biodegradability. Nevertheless, the complex and relatively expensive extraction costs hamper its exploitation and, implicitly, the recycling of marine waste, the most abundant source of chitosan. In the spirit of developing environmental-friendly and cost-effective procedures, the present study describes one method worth consideration to deliver calcium-carbonate-enriched chitosan from shrimp shell waste, which proposes to maintain the native minerals in the structure of chitin in order to improve the thermal stability and processability of chitosan. Therefore, a synthesis protocol was developed starting from an optimized deacetylation procedure using commercial chitin. The ultimate chitosan product from shrimp shells, containing native calcium carbonate, was further compared to commercial chitosan and chitosan synthesized from commercial chitin. Finally, the collected data during the study pointed out that the prospected method succeeded in delivering calcium-carbonate-enriched chitosan with high deacetylation degree (approximately 75%), low molecular weight (Mn ≈ 10.000 g/ mol), a crystallinity above 59 calculated in the (020) plane, high thermal stability (maximum decomposition temperature over 300 °C), and constant viscosity on a wide range of share rates (quasi-Newtonian behavior), becoming a viable candidate for future chitosan-based materials that can expand the application horizon.

7.
Polymers (Basel) ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36235947

RESUMO

A series of poly(butylene sebacate) (PBSe) aliphatic polyesters were successfully synthesized by the melt polycondensation of sebacic acid (Se) and 1,4-butanediol (BDO), two monomers manufactured on an industrial scale from biomass. The number average molecular weight (Mn) in the range from 6116 to 10,779 g/mol and the glass transition temperature (Tg) of the PBSe polyesters were tuned by adjusting the feed ratio between the two monomers. Polylactic acid (PLA)/PBSe blends with PBSe concentrations between 2.5 to 20 wt% were obtained by melt compounding. For the first time, PBSe's effect on the flexibility and toughness of PLA was studied. As shown by the torque and melt flow index (MFI) values, the addition of PBSe endowed PLA with both enhanced melt processability and flexibility. The tensile tests and thermogravimetric analysis showed that PLA/PBSe blends containing 20 wt% PBSe obtained using a BDO molar excess of 50% reached an increase in elongation at break from 2.9 to 108%, with a negligible decrease in Young's modulus from 2186 MPa to 1843 MPa, and a slight decrease in thermal performances. These results demonstrated the plasticizing efficiency of the synthesized bio-derived polyesters in overcoming PLA's brittleness. Moreover, the tunable properties of the resulting PBSe can be of great industrial interest in the context of circular bioeconomy.

8.
Polymers (Basel) ; 14(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36236149

RESUMO

In this study, ligand-free nanogels (LFNGs) as potential antivenom mimics were developed with the aim of preventing hypersensitivity and other side effects following massive bee attacks. For this purpose, poly (ethylene glycol) diacrylate was chosen as a main synthetic biocompatible matrix to prepare the experimental LFNGs. The overall concept uses inverse mini-emulsion polymerization as the main route to deliver nanogel caps with complementary cavities for phospholipase A2 (PLA2) from bee venom, created artificially with the use of molecular imprinting (MI) technologies. The morphology and the hydrodynamic features of the nanogels were confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis. The following rebinding experiments evidenced the specificity of molecularly imprinted LFNG for PLA2, with rebinding capacities up to 8-fold higher compared to the reference non-imprinted nanogel, while the in vitro binding assays of PLA2 from commercial bee venom indicated that such synthetic nanogels are able to recognize and retain the targeted PLA2 enzyme. The results were finally collaborated with in vitro cell-viability experiments and resulted in a strong belief that such LFNG may actually be used for future therapies against bee envenomation.

9.
J Hazard Mater ; 399: 123026, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32516646

RESUMO

Despite major efforts to combat pollution, the presence of pathogenic bacteria is still detected in surface water, soil and even crops due to poor purification of domestic and industrial wastewaters. Therefore, we have designed molecularly imprinted polymer films and quaternary ammonium-functionalized- kaolin microparticles to target specifically Gram-negative bacteria (GNB) and Gram-positive bacteria (GPB) in wastewaters and ensure a higher purification rate by working in tandem. According to the bacteriological indicators, a reduction by 90 % was registered for GNB (total coliforms and Escherichia coli O157) and by 77 % for GPB (Clostridium perfringens) in wastewaters. The reduction rates were confirmed when using pathogen genetic markers to quantify particular types of GNB and GPB, like Salmonella typhimurium (reduction up to 100 %),Campylobacter jejuni (reduction up to 70 %), Enterococcus faecalis (reduction up to 81 %), Clostridium perfringens (reduction up to 97 %) and Shiga toxin-producing Escherichia coli (reduction up to 64 %). In order to understand the bactericidal activity of prepared films and microparticles, we have performed several key analyses such as Cryo-TEM, to highlight the auto-assembly mechanism of components during the films formation, and 29 Si/13 C CP/MAS NMR, to reveal the way quaternary ammonium groups are grafted on the surface of kaolin microparticles.


Assuntos
Compostos de Amônio , Escherichia coli O157 , Bactérias , Bactérias Gram-Negativas , Águas Residuárias
10.
Nanomaterials (Basel) ; 10(2)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979174

RESUMO

This study presents the design of novel composites nanogels, based on poly(ethylene glycol) diacrylate and natural zeolite particles, that are able to act as materials with controlled drug delivery properties. Natural zeolite‒nanogels composite, with varying zeolite contents, were obtained by an inverse mini-emulsion technique and loaded with 5-fluorouracil, a widely used chemotherapeutic drug. Herein, the possibility of adjusting final properties by means of modifying the preparation conditions was investigated. The prepared composite nanogels are characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). In light of this tunable drug-loading capability, swelling behaviour, and cytotoxicity, these composite nanogels could be highly attractive as drug reservoirs.

11.
J Diet Suppl ; 17(1): 88-96, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30380351

RESUMO

Separation of naphtodianthrones (NTs) from Hypericum perforatum L. (aerial part of St. John's Wort) is still topical due to some hard-to-beat medicinal attributes of these bioactive compounds. Unfortunately, their low bioavailability (0.06%-0.4%) complicates the extraction process. Therefore, developing straightforward and lower-cost methodologies for NT separation is still a priority. In support of this purpose, for preparing NT formulations from flowers and leaves of wild St. John's Wort (hyperici herba), a cutoff preparative methodology is described herein. Combining Soxhlet extraction and reflux extraction, some concentrated and rather pure NT ethanolic-based formulations without chlorophyl and grease were obtained.


Assuntos
Antracenos/isolamento & purificação , Composição de Medicamentos/métodos , Hypericum/química , Extratos Vegetais/química , Etanol , Flores/química , Humanos , Fitoterapia , Folhas de Planta/química
12.
RSC Adv ; 8(32): 17635-17644, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35542079

RESUMO

In this study, composite hydrogels with interpenetrated polymer networks (IPNs), based on bacterial cellulose (BC) and poly(acrylic acid-co-N,N'-methylene-bis-acrylamide) (PAA), were synthesized by radical polymerization and characterized herein for the first time. Liquid fertilizer (LF) formulations, containing potassium, phosphorus, ammonium oxides and micronutrients, were encapsulated directly into the IPNs of the composite hydrogels during synthesis. Thermal analyses and scanning electron microscopy of control and composite xerogels highlighted the formation of IPNs between BC and PAA. Swelling determinations confirmed the influence of the crosslinker and of the liquid fertilizer concentration upon the density of the IPNs. Further rheology studies and release profiles indicated how the presence of BC and the increase of the crosslinking density of IPNs improved the mechanical strength and the release profile of LF for the innovative composite BC-PAA hydrogels. Results regarding the fertilizer release indicated that the presence of the BC led to a more controlled liberation of the fertilizer proving that this new formulation is potentially viable for application in agricultural practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...