Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Lett ; 42(11): 2441-2446, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32875477

RESUMO

OBJECTIVE: Hepatitis E virus (HEV) infection is a major cause of acute hepatitis worldwide. The aim of the study is the development of plant expression system for the production of virus-like particles formed by HEV capsid and the characterization of their immunogenicity. RESULTS: Open reading frame (ORF) 2 encodes the viral capsid protein and possesses candidate for vaccine production. In this study, we used truncated genotype 3 HEV ORF 2 consisting of aa residues 110 to 610. The recombinant protein was expressed in Nicotiana benthamiana plants using the self-replicating potato virus X-based vector pEff up to 10% of the soluble protein fraction. The yield of HEV 110-610 after purification was 150-200 µg per 1 g of green leaf biomass. The recombinant protein formed nanosized virus-like particles. The immunization of mice with plant-produced HEV 110-610 protein induced high levels of HEV-specific serum antibodies. CONCLUSIONS: HEV ORF 2 (110-610 aa) can be used as candidate for the development of a plant-produced vaccine against Hepatitis E.


Assuntos
Vírus da Hepatite E/imunologia , Hepatite E/prevenção & controle , Vacinas contra Influenza/administração & dosagem , Mutação , Nicotiana/crescimento & desenvolvimento , Proteínas Virais/genética , Animais , Feminino , Anticorpos Anti-Hepatite/sangue , Hepatite E/imunologia , Vírus da Hepatite E/metabolismo , Imunização , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/metabolismo , Injeções Intramusculares , Camundongos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Proteínas Virais/imunologia
2.
Plants (Basel) ; 9(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878256

RESUMO

The Hepatitis E virus (HEV) is a causative agent of acute hepatitis, mainly transmitted by the fecal-oral route or zoonotic. Open reading frame (ORF) 2 encodes the viral capsid protein, which is essential for virion assembly, host interaction, and inducing neutralizing antibodies. In this study, we investigated whether full-length and N- and C-terminally modified versions of the capsid protein transiently expressed in N. benthamiana plants could assemble into highly-immunogenic, virus-like particles (VLPs). We also assessed whether such VLPs can act as a carrier of foreign immunogenic epitopes, such as the highly-conserved M2e peptide from the Influenza virus. Plant codon-optimized HEV ORF2 capsid genes were constructed in which the nucleotides coding the N-terminal, the C-terminal, or both parts of the protein were deleted. The M2e peptide was inserted into the P2 loop after the residue Gly556 of HEV ORF2 protein by gene fusion, and three different chimeric constructs were designed. Plants expressed all versions of the HEV capsid protein up to 10% of total soluble protein (TSP), including the chimeras, but only the capsid protein consisting of aa residues 110 to 610 (HEV 110-610) and chimeric M2 HEV 110-610 spontaneously assembled in higher order structures. The chimeric VLPs assembled into particles with 22-36 nm in diameter and specifically reacted with the anti-M2e antibody.

3.
Curr Pharm Des ; 19(31): 5564-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23394559

RESUMO

Advances in transient expression technologies have allowed the production of milligram quantities of proteins within a matter of days using only small amounts (tens of grams) of plant tissue. Among the proteins that have been produced using this approach are the structural proteins of viruses which are capable of forming virus-like particles (VLPs). As such particulate structures are potent stimulators of the immune system, they are excellent vaccine candidates both in their own right and as carriers of additional immunogenic sequences. VLPs of varying complexity derived from a variety of animal viruses have been successfully transiently expressed in plants and their immunological properties assessed. Generally, the plant-produced VLPs were found to have the expected antigenicity and immunogenicity. In several cases, including an M2e-based influenza vaccine candidate, the plant-expressed VLPs have been shown to be capable of stimulating protective immunity. These findings raise the prospect that low-cost plant-produced vaccines could be developed for both veterinary and human use.


Assuntos
Proteínas de Plantas/metabolismo , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Proteínas Virais/metabolismo , Animais , Antígenos Virais/imunologia , Reatores Biológicos , Humanos , Fatores de Tempo , Vacinas de Partículas Semelhantes a Vírus/economia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/economia , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...