Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 65(12): e0138621, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34570652

RESUMO

Superficial fungal infections are prevalent worldwide, with dermatophytes as the most common cause. Various antifungal agents including azoles and allylamines are commonly used to treat dermatophytosis. However, their overuse has yielded drug-resistant strains, calling for the development of novel antimycotic compounds. Olorofim is a newly developed antifungal compound that targets pyrimidine biosynthesis in molds. The purpose of this study was to determine the in vitro and in vivo antifungal effects of olorofim against common dermatophytes. The in vitro activity of olorofim against dermatophytes was assessed by microtiter broth dilution method. Bioinformatic analysis of olorofim binding to dihydroorotate dehydrogenase (DHODH) of dermatophytes was also performed, using Aspergillus fumigatus DHODH as a template. The in vivo efficacy of the drug was investigated, using a guinea pig model, experimentally infected with Microsporum gypseum. Microtiter assays confirmed the high in vitro sensitivity of dermatophytes to olorofim (MIC = 0.015-0.06 mg/liter). Amino acid sequence analysis indicated that DHODH is highly conserved among dermatophytes. The critical residues, in dermatophytes, involved in olorofim binding were similar to their counterparts in A. fumigatus DHODH, which explains their susceptibility to olorofim. Typical skin lesions of dermatophyte infection were observed in the guinea pig model at 7 days postinoculation. Following 1 week of daily topical administration of olorofim, similar to the clotrimazole group, the skin lesions were resolved and normal hair growth patterns appeared. In light of the in vitro and in vivo activity of olorofim against dermatophytes, this novel agent may be considered as a treatment of choice against dermatophytosis.


Assuntos
Arthrodermataceae , Acetamidas , Animais , Antifúngicos/farmacologia , Cobaias , Testes de Sensibilidade Microbiana , Piperazinas , Pirimidinas , Pirróis
2.
Iran Biomed J ; 25(4): 255-64, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33992037

RESUMO

Background: The methylotrophic yeast Pichia pastoris is an appealing production host for a variety of recombinant proteins, including biologics. In this sense, various genetic- and non-genetic-based techniques have been implemented to improve the production efficiency of this expression platform. Loss of supression (Los1) encodes a non-essential nuclear tRNA exporter in Saccharomyces cerevisiae, which its deletion extends replicative lifespan. Herein, a los1-deficient strain of P. pastoris was generated and characterized. Methods: A gene disruption cassette was prepared and transformed into an anti-CD22-expressing strain of P. pastoris. A δ los1 mutant was isolated and confirmed. The drug sensitivity of the mutant was also assessed. The growth pattern and the level of anti-CD22 single-chain variable fragment (scFv) expression were compared between the parent and mutant strains. Resuults: The los1 homologue was found to be a non-essential gene in P. pastoris. Furthermore, the susceptibility of los1 deletion strain to protein synthesis inhibitors was altered. This strain showed an approximately 1.85-fold increase in the extracellular level of anti-CD22 scFv (p < 0.05). The maximum concentrations of total proteins secreted by δ los1 and parent strains were 125 mg/L and 68 mg/L, respectively. Conclusion: The presented data suggest that the targeted disruption of los1 homologue in P. pastoris can result in a higher expression level of our target protein. Findings of this study may improve the current strategies used in optimizing the productivity of recombinant P. pastoris strains.


Assuntos
Deleção de Genes , Marcação de Genes/métodos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Sobrevivência Celular/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...