Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(6): 3667-3674, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38268550

RESUMO

Nanoscale deformations and corrugations occur in graphene-like two-dimensional materials during their incorporation into hybrid structures and real devices, such as sensors based on surface-enhanced Raman scattering (SERS-based sensors). The structural features mentioned above are known to affect the electronic properties of graphene, thus highly sensitive and high-resolution techniques are required to reveal and characterize arising local defects, mechanical deformations, and phase transformations. In this study, we demonstrate that gap-mode tip-enhanced Raman Scattering (gm-TERS), which offers the benefits of structural and chemical analytical methods, allows variations in the structure and mechanical state of a two-dimensional material to be probed with nanoscale spatial resolution. In this work, we demonstrate locally enhanced gm-TERS on a monolayer graphene film placed on a plasmonic substrate with specific diameter gold nanodisks. SERS measurements are employed to determine the optimal disk diameter and excitation wavelength for further realization of gm-TERS. A significant local plasmonic enhancement of the main vibrational modes in graphene by a factor of 100 and a high spatial resolution of 10 nm are achieved in the gm-TERS experiment, making gm-TERS chemical mapping possible. By analyzing the gm-TERS spectra of the graphene film in the local area of a nanodisk, the local tensile mechanical strain in graphene was detected, resulting in a split of the G mode into two components, G+ and G-. Using the frequency split in the positions of G+ and G- modes in the TERS spectra, the stress was estimated to be up to 1.5%. The results demonstrate that gap-mode TERS mapping allows rapid and precise characterization of local structural defects in two-dimensional materials on the nanoscale.

2.
Rev Sci Instrum ; 93(3): 034703, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365006

RESUMO

In semiconductor device history, a trend is observed where narrowing and increasing the number of material layers improve device functionality, with diodes, transistors, thyristors, and superlattices following this trend. While superlattices promise unique functionality, they are not widely adopted due to a technology barrier, requiring advanced fabrication, such as molecular beam epitaxy and lattice-matched materials. Here, a method to design quantum devices using amorphous materials and physical vapor deposition is presented. It is shown that the multiplication gain M depends on the number of layers of the superlattice, N, as M = kN, with k as a factor indicating the efficiency of multiplication. This M is, however, a trade-off with transit time, which also depends on N. To demonstrate, photodetector devices are fabricated on Si, with the superlattice of Se and As2Se3, and characterized using current-voltage (I-V) and current-time (I-T) measurements. For superlattices with the total layer thicknesses of 200 nm and 2 µm, the results show that k200nm = 0.916 and k2µm = 0.384, respectively. The results confirm that the multiplication factor is related to the number of superlattice layers, showing the effectiveness of the design approach.

3.
Sci Rep ; 11(1): 5674, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707549

RESUMO

The use of an appropriate delivery system capable of protecting, translocating, and selectively releasing therapeutic moieties to desired sites can promote the efficacy of an active compound. In this work, we have developed a nanoformulation which preserves its magnetization to load a model anticancerous drug and to explore the controlled release of the drug in a cancerous environment. For the preparation of the nanoformulation, self-assembled magnetic nanospheres (MNS) made of superparamagnetic iron oxide nanoparticles were grafted with a monolayer of (3-aminopropyl)triethoxysilane (APTES). A direct functionalization strategy was used to avoid the loss of the MNS magnetization. The successful preparation of the nanoformulation was validated by structural, microstructural, and magnetic investigations. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to establish the presence of APTES on the MNS surface. The amine content quantified by a ninhydrin assay revealed the monolayer coverage of APTES over MNS. The monolayer coverage of APTES reduced only negligibly the saturation magnetization from 77 emu/g (for MNS) to 74 emu/g (for MNS-APTES). Detailed investigations of the thermoremanent magnetization were carried out to assess the superparamagnetism in the MNS. To make the nanoformulation pH-responsive, the anticancerous drug Nintedanib (NTD) was conjugated with MNS-APTES through the acid liable imine bond. At pH 5.5, which mimics a cancerous environment, a controlled release of 85% in 48 h was observed. On the other hand, prolonged release of NTD was found at physiological conditions (i.e., pH 7.4). In vitro cytotoxicity study showed dose-dependent activity of MNS-APTES-NTD for human lung cancer cells L-132. About 75% reduction in cellular viability for a 100 µg/mL concentration of nanoformulation was observed. The nanoformulation designed using MNS and monolayer coverage of APTES has potential in cancer therapy as well as in other nanobiological applications.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Nanopartículas de Magnetita/química , Nanosferas/química , Propilaminas/química , Silanos/química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Humanos , Indóis/química , Nanopartículas de Magnetita/ultraestrutura , Espectroscopia Fotoeletrônica , Prótons , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
4.
J Chem Phys ; 153(16): 164708, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138402

RESUMO

Semiconducting nanoplatelets (NPLs) have attracted great attention due to the superior photophysical properties compared to their quantum dot analogs. Understanding and tuning the optical and electronic properties of NPLs in a plasmonic environment is a new paradigm in the field of optoelectronics. Here, we report on the resonant plasmon enhancement of light emission including Raman scattering and photoluminescence from colloidal CdSe/CdS nanoplatelets deposited on arrays of Au nanodisks fabricated by electron beam lithography. The localized surface plasmon resonance (LSPR) of the Au nanodisk arrays can be tuned by varying the diameter of the disks. In the case of surface-enhanced Raman scattering (SERS), the Raman intensity profile follows a symmetric Gaussian shape matching the LSPR of the Au nanodisk arrays. The surface-enhanced photoluminescence (SEPL) profile of NPLs, however, follows an asymmetric Gaussian distribution highlighting a compromise between the excitation and emission enhancement mechanisms originating from energy transfer and Purcell effects. The SERS and SEPL enhancement factors depend on the nanodisk size and reach maximal values at 75 and 7, respectively, for the sizes, for which the LSPR energy of Au nanodisks coincides with interband transition energies in the semiconductor platelets. Finally, to explain the origin of the resonant enhancement behavior of SERS and SEPL, we apply a numerical simulation to calculate plasmon energies in Au nanodisk arrays and emission spectra from NPLs in such a plasmonic environment.

5.
J Phys Condens Matter ; 32(48): 485702, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32897873

RESUMO

Index matching of guided modes in birefringent multilayered organic waveguides opens new prospects for the design of mode coupling and mode switching devices. We demonstrate index matching of guided modes in two multilayered structures, in (a) a PTCDA-Alq3-PTCDA three-layer and (b) a PTCDA-Alq3 effective medium multilayer waveguide. The optical waveguides were grown on a Pyrex substrate by organic molecular beam deposition. The occurrence of index matching was investigated both experimentally by measuring the effective refractive index dispersion of transverse electric and magnetic modes using the m-line technique and theoretically by modelling the index dispersion with a transfer matrix algorithm.

6.
RSC Adv ; 10(33): 19353-19359, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35515464

RESUMO

The influence of the substrate temperature on pulsed laser deposited (PLD) CoFe2O4 thin films for supercapacitor electrodes was thoroughly investigated. X-ray diffractometry and Raman spectroscopic analyses confirmed the formation of CoFe2O4 phase for films deposited at a substrate temperature of 450 °C. Topography and surface smoothness was measured using atomic force microscopy. We observed that the films deposited at room temperature showed improved electrochemical performance and supercapacitive properties compared to those of films deposited at 450 °C. Specific capacitances of about 777.4 F g-1 and 258.5 F g-1 were obtained for electrodes deposited at RT and 450 °C, respectively, at 0.5 mA cm-2 current density. The CoFe2O4 films deposited at room temperature exhibited an excellent power density (3277 W kg-1) and energy density (17 W h kg-1). Using electrochemical impedance spectroscopy, the series resistance and charge transfer resistance were found to be 1.1 Ω and 1.5 Ω, respectively. The cyclic stability was increased up to 125% after 1500 cycles due to the increasing electroactive surface of CoFe2O4 along with the fast electron and ion transport at the surface.

7.
Nanoscale Adv ; 2(11): 5441-5449, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36132045

RESUMO

Tip-enhanced Raman scattering (TERS) has recently emerged as a powerful technique for studying the local properties of low dimensional materials. Being a plasmon driven system, a dramatic enhancement of the TERS sensitivity can be achieved by an appropriate choice of the plasmonic substrate in the so-called gap-mode configuration. Here, we investigate the phonon properties of CdSe nanocrystals (NCs) utilizing gap-mode TERS. Using the Langmuir-Blodgett technique, we homogeneously deposited submonolayers of colloidal CdSe NCs on two different nanostructured plasmonic substrates. Amplified by resonant gap-mode TERS, the scattering by the optical phonon modes of CdSe NCs is markedly enhanced making it possible to observe up to the third overtone of the LO mode reliably. The home-made plasmonic substrates and TERS tips allow the analysis of the TERS images of CdSe phonon modes with nanometer spatial resolution. The CdSe phonon scattering intensity is strongly correlated with the local electromagnetic field distribution across the plasmonic substrates.

8.
Ultramicroscopy ; 206: 112811, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31310887

RESUMO

Tip-enhanced Raman spectroscopy (TERS) allows the chemical analysis with a spatial resolution at the nanoscale, well beyond what the diffraction limit of light makes possible. We can further boost the TERS sensitivity by using a metallic substrate in the so-called gap-mode TERS. In this context, the goal of this work is to provide a generalized view of imaging artifacts in TERS and near-field imaging that occur due to tip-sample coupling. Contrary to the case of gap-mode with a flat substrate where the size of the enhanced region is smaller than the tip size when visualizing 3D nanostructures the tip convolution effect may broaden the observed dimensions due to the local curvature of the sample. This effect is particularly critical considering that most works on gap-mode TERS consider a perfectly flat substrate which is rarely the case in actual experiments. We investigate a range of substrates to evidence these geometrical effects and to obtain an understanding of the nanoscale curvature role in TERS imaging. Our experimental results are complemented by numerical simulations and an analogy with atomic force microscopy artifacts is introduced. As a result, this work offers a useful analysis of gap-mode TERS imaging with tip- and substrate-related artifacts furthering our understanding and the reliability of near-field optical nanospectroscopy.

9.
J Colloid Interface Sci ; 529: 415-425, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29940324

RESUMO

Magnetic nanoparticles (MNPs) with higher magnetization are highly desirable for targeted drug delivery (TDD) systems, as it helps accumulation of drug at the target site. However, functionalization of MNPs for drug binding reduces the magnetization which affects the efficacy of TDD. Herein we report direct functionalization of MNPs with (3-Aminopropyl)triethoxysilane (APTES) which preserves the magnetization. Grafting density estimated by TGA and BET analysis showed monolayer grafting of APTES on MNP surface. MNPs were comprehensively characterized by XRD, HR-TEM, SQUID-VSM and FTIR. Anti-cancerous drug telmisartan (TEL) was loaded on monolayer APTES grafted MNPs. In-vitro controlled drug release and cytotoxicity study on PC-3 human prostate cancer cell line of TEL conjugated MNPs are also discussed. This functionalization strategy can be extended to other biomedical applications where higher magnetization is desired.


Assuntos
Antineoplásicos/administração & dosagem , Benzimidazóis/administração & dosagem , Benzoatos/administração & dosagem , Preparações de Ação Retardada/química , Nanopartículas de Magnetita/química , Propilaminas/química , Silanos/química , Antineoplásicos/farmacocinética , Benzimidazóis/farmacocinética , Benzoatos/farmacocinética , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Telmisartan
10.
RSC Adv ; 9(1): 444-449, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-35521575

RESUMO

The introduction of colloidal single-layer carbon nitride (SLCN) nanosheets at the stage of the formation of Au nanocrystals (NCs) in aqueous solutions allows the surface plasmon resonance peak position of gold/SLCN composites to be tuned in a relatively broad range of 520-610 nm. The effect is believed to originate from a strong electronic interaction between Au NCs and SLCN nanosheets attached to their surface as capping ligands and resulting in a decrease of the effective electron density on the Au NC surface. The SLCN nanosheets suppress direct interparticle interactions between Au NCs prohibiting additional plasmonic features typical for the Au NC associates. Species similar to SLCN in terms of functionalities but having no conjugated aromatic system, such as polyethyleneimine, only induce aggregation of Au NCs but do not allow the main surface plasmon resonance of the NCs to be tuned demonstrating the crucial role of electronic interaction between the NC surface and the aromatic SLCN sheets for the surface plasmon resonance tuning.

11.
RSC Adv ; 8(54): 30736-30746, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35548720

RESUMO

A Raman spectroscopic study of Cu2ZnSnS4 (CZTS) nanocrystals (NCs) produced by a "green" synthesis in aqueous solutions is reported. Size-selected CZTS NCs reveal phonon confinement that manifests itself in an upward shift of the main phonon peak by about 3-4 cm-1 by varying the NC diameter from 3 to 2 nm. A non-monotonous shift and narrowing of the main peak are attributed to the special shape of the phonon dispersion in this material. Moreover, the method of sample preparation, the nature of the supporting substrate and the photoexcitation regime are found to crucially influence the Raman spectra of the CZTS samples. Particularly, the possible oxidation and hydrolysis of CZTS NCs with the concomitant formation of a Cu-S phase are systematically investigated. The nature of the film support is found to strongly affect the amount of admixture copper sulfide phases with the Cu2-x S/CuS content being the highest for oxidized silicon and glass and notably lower for ITO and even less for gold supports. The effect is assumed to originate from the different hydrophilicity of the supporting surfaces, resulting in a different morphology and surface area of the NC film exposed to the atmosphere, as well as the degree of the NC oxidation/hydrolysis. The amount of copper sulfide increases with the laser power. This effect is interpreted as a result of photochemical/photocatalytic transformations of the CZTS NCs.

12.
Nanoscale ; 8(39): 17204-17212, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27722399

RESUMO

Recently developed two-dimensional colloidal semiconductor nanocrystals, or nanoplatelets (NPLs), extend the palette of solution-processable free-standing 2D nanomaterials of high performance. Growing CdSe and CdS parts subsequently in either side-by-side or stacked manner results in core-crown or core/shell structures, respectively. Both kinds of heterogeneous NPLs find efficient applications and represent interesting materials to study the electronic and lattice excitations and interaction between them under strong one-directional confinement. Here, we investigated by Raman and infrared spectroscopy the phonon spectra and electron-phonon coupling in CdSe/CdS core/shell and core-crown NPLs. A number of distinct spectral features of the two NPL morphologies are observed, which are further modified by tuning the laser excitation energy Eexc between in- and off-resonant conditions. The general difference is the larger number of phonon modes in core/shell NPLs and their spectral shifts with increasing shell thickness, as well as with Eexc. This behaviour is explained by strong mutual influence of the core and shell and formation of combined phonon modes. In the core-crown structure, the CdSe and CdS modes preserve more independent behaviour with only interface modes forming the phonon overtones with phonons of the core.

13.
Nanoscale ; 8(16): 8607-17, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27049842

RESUMO

Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin.

14.
J Phys Condens Matter ; 28(6): 065401, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26795711

RESUMO

The experimental resonant and non-resonant Raman scattering spectra of the kesterite structural modification of Cu2ZnGeS4 single crystals are reported. The results are compared with those calculated theoretically within the density functional perturbation theory. For the majority of lines a good agreement (within 2-5 cm(-1)) is established between experimental and calculated mode frequencies. However, several dominant spectral lines, in particular the two intense fully symmetric modes, are found to deviate from the calculated values by as much as 20 cm(-1). A possible reason for this discrepancy is found to be associated with the Fermi resonant interaction between one and two-phonon vibrational excitations. The modelling of spectra, which takes into account the symmetry of interacting states, allows a qualitative description of the observed experimental findings. Due to the similarity of the vibrational spectra of Cu2A (II) B (IV) S4 (A = Zn, Mn, Cd; B = Sn, Ge, Si) chalcogenides, Fermi resonance is argued to be a general phenomenon for this class of compounds.

15.
ACS Appl Mater Interfaces ; 8(6): 3912-8, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26799492

RESUMO

Ferromagnetic GaMnP layers were prepared by ion implantation and pulsed laser annealing (PLA). We present a systematic investigation on the evolution of microstructure and magnetic properties depending on the pulsed laser annealing energy. The sample microstructure was analyzed by high-resolution X-ray diffraction (HR-XRD), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), ultraviolet Raman spectroscopy (UV-RS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. The presence of X-ray Pendellösung fringes around GaP (004) and RBS channeling prove the epitaxial structure of the GaMnP layer annealed at the optimized laser energy density (0.40 J/cm(2)). However, a forbidden TO vibrational mode of GaP appears and increases with annealing energy, suggesting the formation of defective domains inside the layer. These domains mainly appear in the sample surface region and extend to almost the whole layer with increasing annealing energy. The reduction of the Curie temperature (TC) and of the uniaxial magnetic anisotropy gradually happens when more defects and the domains appear as increasing the annealing energy density. This fact univocally points to the decisive role of the PLA parameters on the resulting magnetic characteristics in the processed layers, which eventually determine the magnetic (or spintronics) figure of merit.

16.
Nanoscale ; 8(8): 4529-36, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26661036

RESUMO

High-quality fabrication of plasmonic devices often relies on wet-chemically grown ultraflat, presumably single-crystalline gold flakes due to their superior materials properties. However, important details about their intrinsic structure and their optical properties are not well understood yet. In this study, we present a synthesis routine for large flakes with diameters of up to 70 µm and an in-depth investigation of their structural and optical properties. The flakes are precisely analyzed by transmission electron microscopy, electron backscatter diffraction and micro-ellipsometry. We found new evidence for the existence of twins extending parallel to the Au flake {111} surfaces which have been found to not interfere with the presented nanopatterning. Micro-Ellipsometry was carried out to determine the complex dielectric function and to compare it to previous measurements of bulk single crystalline gold. Finally, we used focused ion beam milling to prepare smooth crystalline layers and high-quality nanostructures with desired thickness down to 10 nm to demonstrate the outstanding properties of the flakes. Our findings support the plasmonics and nano optics community with a better understanding of this material which is ideally suited for superior plasmonic nanostructures.

17.
Phys Chem Chem Phys ; 17(33): 21198-203, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25566587

RESUMO

Surface- and tip-enhanced resonant Raman scattering (resonant SERS and TERS) by optical phonons in a monolayer of CdSe quantum dots (QDs) is demonstrated. The SERS enhancement was achieved by employing plasmonically active substrates consisting of gold arrays with varying nanocluster diameters prepared by electron-beam lithography. The magnitude of the SERS enhancement depends on the localized surface plasmon resonance (LSPR) energy, which is determined by the structural parameters. The LSPR positions as a function of nanocluster diameter were experimentally determined from spectroscopic micro-ellipsometry, and compared to numerical simulations showing good qualitative agreement. The monolayer of CdSe QDs was deposited by the Langmuir-Blodgett-based technique on the SERS substrates. By tuning the excitation energy close to the band gap of the CdSe QDs and to the LSPR energy, resonant SERS by longitudinal optical (LO) phonons of CdSe QDs was realized. A SERS enhancement factor of 2 × 10(3) was achieved. This allowed the detection of higher order LO modes of CdSe QDs, evidencing the high crystalline quality of QDs. The dependence of LO phonon mode intensity on the size of Au nanoclusters reveals a resonant character, suggesting that the electromagnetic mechanism of the SERS enhancement is dominant. Finally, the resonant TERS spectrum from CdSe QDs was obtained using electrochemically etched gold tips providing an enhancement on the order of 10(4). This is an important step towards the detection of the phonon spectrum from a single QD.

18.
Nanotechnology ; 25(7): 075601, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24451156

RESUMO

Stable colloidal solutions of zinc oxide in dimethylsulfoxide were synthesized via interaction between zinc(II) acetate and tetraalkylammonium hydroxides (alkyl-ethyl, propyl, butyl, and pentyl). Colloids of ZnO emit photoluminescence in a broad band with a maximum at 2.3-2.4 eV with quantum yields of up to 9-10% at room temperature and 15-16% at 80 K. The photoluminescence is supposed to originate from the radiative recombination of conduction band electrons with holes captured by deep traps having corresponding states in the band gap 1.0-1.2 eV above the valence band edge. The size of colloidal ZnO nanocrystals depends on the duration and temperature of the post-synthesis treatment and varies in the range of 3-6 nm. Growth of the ZnO nanocrystals can be terminated at any moment of the thermal treatment by freezing the colloidal solution or by addition of tetraethyl orthosilicate which hydrolyses forming core-shell ZnO@SiO2 particles. ZnO nanocrystals introduced into polyethyleneimine films can be used as an active component of an LED emitting at an applied voltage higher than 13 V.


Assuntos
Coloides/química , Dimetil Sulfóxido/química , Óxido de Zinco/química , Biomarcadores/química , Cátions , Hidrólise , Luz , Luminescência , Nanopartículas/química , Nanotecnologia , Processos Fotoquímicos , Polietilenoimina/química , Espalhamento de Radiação , Silanos/química , Propriedades de Superfície , Temperatura
19.
J Chem Phys ; 136(6): 064704, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22360212

RESUMO

The effects of electronic states and air exposure on the spectroscopic properties of manganese phthalocyanine (MnPc) have been examined. The observed features of the Q-band in the absorption spectra can be explained by intrinsic electronic properties of MnPc, i.e., the formation of singly charged molecules by charge transfer excitations. However, the reaction of MnPc with atmospheric molecular oxygen leads to deviations in peak intensities but does not change the fundamental characteristics of the spectra. Nevertheless, the reaction with oxygen changes the spin state from S = 3/2 to S = 1/2. X-ray diffraction measurements also indicate a slow diffusion process of the oxygen into the MnPc crystal. We discuss both influences to explain the behaviour of MnPc in various spectroscopic methods (EELS, ellipsometry, PES). Furthermore, we support the experimental investigations by detailed ab-initio calculations of spectroscopic properties using methods of the density functional theory framework.

20.
Rev Sci Instrum ; 83(12): 123708, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23277997

RESUMO

There are many challenges in accomplishing tip-enhanced Raman spectroscopy (TERS) and obtaining a proper tip is probably the greatest one. Since tip size, composition, and geometry are the ultimate parameters that determine enhancement of intensity and lateral resolution, the tip becomes the most critical component in a TERS experiment. However, since the discovery of TERS the cantilevers used in atomic force microscopy (AFM) have remained basically the same: commercial silicon (or silicon nitride) tips covered by a metallic coating. The main issues of using metal-coated silicon cantilevers, such as wearing off of the metal layer or increased tip radius, can be completely overcome by using all-metal cantilevers. Until now in TERS experiments such probes have only been used in a scanning tunneling microscope or in a tuning fork-based shear force microscope but not in AFM. In this work for the first time, we show the use of compact silver cantilevers that are fully compatible with contact and tapping modes in AFM demonstrating their superb performance in TERS experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...