Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 272(Pt 1): 132814, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825281

RESUMO

In this study, a new eco-friendly urea-rich sodium alginate-based hydrogel with a slow-release nitrogen property was prepared, and its effectiveness was evaluated in the cultivation of tomato plants under different water stress levels. The structure and performance of the hydrogel were investigated by FTIR, XRD, TGA, DTG, and SEM. The swelling and release experiments showed that prepared urea-rich hydrogel exhibited a high-water holding capacity (412 ± 4 g/g) and showed a sustained and slow nitrogen release property. A greenhouse pot experiment was conducted using two hydrogel levels (0.1 and 0.5 wt%) under two water deficit levels (30 and 70 % based on required water irrigation). Germination tests indicated that the developed hydrogel fertilizer has no phytotoxicity and has a positive impact on the germination rate even under water deficit conditions. The application of hydrogel fertilizer at 0.5 wt% significantly (p > 0.05) enhanced plant growth parameters such as leaf number, chlorophyll content, stem diameter, and plant length compared to the control treatment. The magnitude of the responses to the hydrogel fertilizer application depended on the concentration of applied hydrogel fertilizer and stress severity with the most positive effects on the growth and yield of tomato observed at a level of 0.5 %. Tomato yield was significantly enhanced by 19.58 %-12.81 %, 18.58 %-22.02 %, and 39.38 %-43.18 % for the plant amended with hydrogel at 0.1-0.5 wt% and grown under water deficit levels of 0, 30, and 70 %, respectively, compared to the control treatment.

2.
Nanoscale ; 16(9): 4484-4513, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38314867

RESUMO

The escalating global demand for food production has predominantly relied on the extensive application of conventional fertilizers (CFs). However, the increased use of CFs has raised concerns regarding environmental risks, including soil and water contamination, especially within cereal-based cropping systems. In response, the agricultural sector has witnessed the emergence of healthier alternatives by utilizing nanotechnology and nano-fertilizers (NFs). These innovative NFs harness the remarkable properties of nanoparticles, ranging in size from 1 to 100 nm, such as nanoclays and zeolites, to enhance nutrient utilization efficiency. Unlike their conventional counterparts, NFs offer many advantages, including variable solubility, consistent and effective performance, controlled release mechanisms, enhanced targeted activity, reduced eco-toxicity, and straightforward and safe delivery and disposal methods. By facilitating rapid and complete plant absorption, NFs effectively conserve nutrients that would otherwise go to waste, mitigating potential environmental harm. Moreover, their superior formulations enable more efficient promotion of sustainable crop growth and production than conventional fertilizers. This review comprehensively examines the global utilization of NFs, emphasizing their immense potential in maintaining environmentally friendly crop output while ensuring agricultural sustainability.


Assuntos
Fertilizantes , Nanopartículas , Fertilizantes/análise , Agricultura/métodos , Solo , Nanotecnologia
3.
Nanoscale ; 16(9): 4920, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38376949

RESUMO

Correction for 'Recent advances in nano-fertilizers: synthesis, crop yield impact, and economic analysis' by Badr-Eddine Channab et al., Nanoscale, 2024, https://doi.org/10.1039/d3nr05012b.

4.
J Environ Manage ; 352: 119928, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38219662

RESUMO

This review investigates the potential of nanocellulose in agriculture, encompassing its structure, synthesis, modification, and applications. Our investigation of the characteristics of nanocellulose includes a comprehensive classification of its structure. Various mechanical, chemical and enzymatic synthesis techniques are evaluated, each offering distinct possibilities. The central role of surface functionalization is thoroughly examined. In particular, we are evaluating the conventional production of nanocellulose, thus contributing to the novelty. This review is a pioneering effort to comprehensively explore the use of nanocellulose in slow and controlled release fertilizers, revolutionizing nutrient management and improving crop productivity with reduced environmental impact. Additionally, our work uniquely integrates diverse applications of nanocellulose in agriculture, ranging from slow-release fertilizers, superabsorbent cellulose hydrogels for drought stress mitigation, and long-lasting crop protection via nanocellulose-based seed coatings. The study ends by identifying challenges and unexplored opportunities in the use of nanocellulose in agriculture. This review makes an innovative contribution by being the first comprehensive study to examine the multiple applications of nanocellulose in agriculture, including slow-release and controlled-release fertilizers.


Assuntos
Proteção de Cultivos , Fertilizantes , Preparações de Ação Retardada/química , Agricultura/métodos , Hidrogéis/química
5.
Int J Biol Macromol ; 258(Pt 2): 128909, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141703

RESUMO

Superabsorbent polymers (SAPs) are a class of polymers that have attracted tremendous interest due to their multifunctional properties and wide range of applications. The importance of this class of polymers is highlighted by the large number of publications, including articles and patents, dealing with the use of SAPs for various applications. Within this framework, this review provides an overview of SAPs and highlights various key aspects, such as their history, classification, and preparation methods, including those related to chemically or physically cross-linked networks, as well as key factors affecting their performance in terms of water absorption and storage. This review also examines the potential use of polysaccharides-based SAPs in agriculture as soil conditioners or slow-release fertilizers. The basic aspects of SAPs, and methods of chemical modification of polysaccharides are presented and guidelines for the preparation of hydrogels are given. The water retention and swelling mechanisms are discussed in light of some mathematical empirical models. The nutrient slow-release kinetics of nutrient-rich SAPs are also examined on the basic of commonly used mathematical models. Some examples illustrating the advantages of using SAPs in agriculture as soil conditioners and agrochemical carriers to improve crop growth and productivity are presented and discussed. This review also attempts to provide an overview of the role of SAPs in mitigating the adverse effects of various abiotic stresses, such as heavy metals, salinity, and drought, and outlines future trends and prospects.


Assuntos
Agricultura , Hidrogéis , Agricultura/métodos , Solo/química , Polímeros/química , Estresse Fisiológico , Água/química
6.
RSC Adv ; 13(45): 31935-31947, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37920194

RESUMO

We prepared cellulose microfibrils-g-hydroxyapatite (CMFs-g-HAPN (8%)) in a granular form. We evaluated the ability of these granules to eliminate Pb(ii) and Cu(ii) ions from aqueous solution in dynamic mode using a fixed-bed adsorption column. Several operating parameters (inlet ion concentration, feed flow rate, bed height) were optimized using response surface methodology (RSM) based on a Doehlert design. Based on ANOVA and regression analyses, adsorption was found to follow the quadratic polynomial model with p < 0.005, R2 = 0.976, and R2 = 0.990, respectively, for Pb(ii) and Cu(ii) ions. Moreover, three kinetic models (Adams-Bohart, Thomas, Yoon-Nelson) were applied to fit our experimental data. The Thomas model and Yoon-Nelson model represented appropriately the whole breakthrough curves. The Adams-Bohart model was suitable only for fitting the initial part of the same curves. Our adsorbent exhibited high selectivity towards Pb(ii) over Cu(ii) ions in the binary metal system, with a maximum predicted adsorption capacity of 59.59 ± 3.37 and 35.66 ± 1.34 mg g-1, respectively. Under optimal conditions, multi-cycle sorption-desorption experiments indicated that the prepared adsorbent could be regenerated and reused up to four successive cycles. The prepared CMFs-g-HAPN was an efficient and effective reusable adsorbent for removal of heavy metals from aqueous systems, and could be a suitable candidate for wastewater treatment on a large scale.

7.
Int J Biol Macromol ; 253(Pt 5): 127229, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802458

RESUMO

The main challenge facing agriculture today is water scarcity. At present, agriculture consumes around 70 % of the planet's freshwater, much of which is lost through evaporation, leaching and runoff. This wastage, combined with the increased frequency and severity of droughts linked to climate change, is having a considerable negative impact on crops. As a result, the food security of people living in regions with limited water resources is threatened. In this regard, efficient water management using water-saving materials and soil additives such as superabsorbent polymers (SAPs) are recognized as an effective strategy to boost water use efficiency by plants and improve agricultural productivity. The present study fits with this strategy and aims to investigate the effect of new sodium alginate-based hydrogel-treated sandy loam soil on seed emergence and growth of tomatoes as a crop model under different water-deficit stress levels. A set of pot experiments was conducted in a greenhouse chamber using sandy loam soil amended with two levels of hydrogel (0.1 % and 0.5 % by weight) along with untreated control, all under water-deficit stress at three levels: 30 % of the daily amount of required irrigation water (DARW) for different growing cycles (severe stress), 70 % DARW (mild stress), and 100 % DARW (normal irrigation conditions). The germination test showed the absence of phytotoxicity of the developed hydrogel and confirmed its suitability in protecting seedlings from drought stress. Greenhouse experiment results demonstrated that water stress and levels of applied hydrogel significantly (P < 0.05) affected plant growth parameters such as plant height, stem diameter, number of leaves, chlorophyll content, fresh weight, and dry weight compared with the treatments without SAPs. The developed sodium alginate-based SAPs showed relevant agronomical benefits under drought stress by retaining more water and nutrients, thus it had the potential to be used in agriculture for better water management along with significant environmental benefits.


Assuntos
Solanum lycopersicum , Humanos , Hidrogéis/farmacologia , Alginatos/farmacologia , Agricultura , Solo , Secas
8.
Carbohydr Polym ; 322: 121326, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839830

RESUMO

This comprehensive review thoroughly examines starch's structure, modifications, and applications in slow/controlled-release fertilizers (SRFs) for agricultural purposes. The review begins by exploring starch's unique structure and properties, providing insights into its molecular arrangement and physicochemical characteristics. Various methods of modifying starch, including physical, chemical, and enzymatic techniques, are discussed, highlighting their ability to impart desirable properties such as controlled release and improved stability. The review then focuses on the applications of starch in the development of SRFs. It emphasizes the role of starch-based hydrogels as effective nutrient carriers, enabling their sustained release to plants over extended periods. Additionally, incorporating starch-based hydrogel nano-composites are explored, highlighting their potential in optimizing nutrient release profiles and promoting plant growth. Furthermore, the review highlights the benefits of starch-based fertilizers in enhancing plant growth and crop yield while minimizing nutrient losses. It presents case studies and field trials demonstrating starch-based formulations' efficacy in promoting sustainable agricultural practices. Overall, this review consolidates current knowledge on starch, its modifications, and its applications in SRFs, providing valuable insights into the potential of starch-based formulations to improve nutrient management, boost crop productivity, and support sustainable agriculture.


Assuntos
Fertilizantes , Amido , Preparações de Ação Retardada , Amido/química , Agricultura/métodos , Produção Agrícola
9.
Environ Sci Pollut Res Int ; 30(49): 107790-107810, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37740159

RESUMO

Alginate-chitosan/hydroxyapatite (Alg-Cs/HAP) beads were prepared as adsorbent to remove methylene blue (MB) and copper ions from an aqueous solution using a batch system. FTIR, TGA, point of zero charge (pHpzc), SEM, XRD, and BET analysis were used to characterize the elaborated material. The effect of several parameters such as initial pH value, adsorbent dose, temperature, contact time, and initial pollutant concentration were also investigated. The obtained results showed that Alg-Cs/HAP exhibit excellent adsorption properties for Cu (II) and MB removal, with high adsorption capacities of copper ions (208.34 mg/g) and methylene blue (454.54 mg/g). The kinetic of the adsorption process is correlated with the pseudo-first-order for methylene blue and the pseudo-second-order for copper ions. The equilibrium data for MB dye fitted the Freundlich isotherm model, thus implying that the adsorption process consists of multilayer adsorption as well as interactions between the adsorbate and the adsorbent. The equilibrium data for copper ions corresponds closely with the Langmuir model which suggests that the adsorbed molecules occur over a monolayer. Various thermodynamic parameters such as the standard Gibbs energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were calculated. All results indicated that Alg-Cs/HAP material has a good potential for the treatment of wastewater.


Assuntos
Quitosana , Poluentes Ambientais , Poluentes Químicos da Água , Quitosana/química , Cobre/química , Azul de Metileno , Fosfatos , Alginatos/química , Termodinâmica , Água/química , Poluentes Químicos da Água/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio
10.
Environ Sci Pollut Res Int ; 30(37): 86773-86789, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37410326

RESUMO

As the demand for sustainable energy sources expands, the production of biodiesel has attracted great attention. The development of effective and ecologically friendly biodiesel catalysts has become an urgent need. In this context, the goal of this study is to develop a composite solid catalyst with enhanced efficiency, reusability, and reduced environmental impact. For that, eco-friendly, and reusable composite solid catalysts have been designed by impregnating different amounts of zinc aluminate into a zeolite matrix (ZnAl2O4@Zeolite). Structural and morphological characterizations confirmed the successful impregnation of zinc aluminate into the zeolite porous structure. Catalytic experiments revealed that the catalyst containing 15 wt% ZnAl2O4 showed the highest conversion activity of fatty acid methyl esters (FAME) of 99% under optimized reaction conditions, including 8 wt% catalyst, a molar ratio of 10:1 methanol to oil, a temperature of 100 °C, and 3 h of reaction time. The developed catalyst demonstrated high thermal and chemical stability, maintaining good catalytic activity even after five cycles. Furthermore, the produced biodiesel quality assessment has demonstrated good properties in compliance with the criteria of the American Society for Testing and Materials ASTM-D6751 and the European Standard EN14214. Overall, the findings of this study could have a significant impact on the commercial production of biodiesel by offering an efficient and environmentally friendly reusable catalyst, ultimately reducing the cost of biodiesel production.


Assuntos
Biocombustíveis , Zeolitas , Esterificação , Óleos de Plantas/química , Ácidos Graxos , Catálise , Zinco
11.
RSC Adv ; 13(28): 19617-19626, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37388148

RESUMO

Water contamination by pesticides is a critical environmental issue, necessitating the development of sustainable and efficient degradation methods. This study focuses on synthesizing and evaluating a novel heterogeneous sonocatalyst for degrading pesticide methidathion. The catalyst consists of graphene oxide (GO) decorated CuFe2O4@SiO2 nanocomposites. Comprehensive characterization using various techniques confirmed the superior sonocatalytic activity of the CuFe2O4@SiO2-GOCOOH nanocomposite compared to CuFe2O4@SiO2 alone. The enhanced performance is attributed to the combined effects of GO and CuFe2O4@SiO2, including increased surface area, enhanced adsorption capabilities, and efficient electron transfer pathways. Reaction parameters such as time, temperature, concentration, and pH significantly influenced the degradation efficiency of methidathion. Longer reaction times, higher temperatures, and lower initial pesticide concentrations favored faster degradation and higher efficiency. Optimal pH conditions were identified to ensure effective degradation. Remarkably, the catalyst demonstrated excellent recyclability, indicating its potential for practical implementation in pesticide-contaminated wastewater treatment. This research contributes to the development of sustainable methods for environmental remediation, highlighting the promising potential of the graphene oxide decorated CuFe2O4@SiO2 nanocomposite as an effective heterogeneous sonocatalyst for pesticide degradation.

12.
Int J Biol Macromol ; 238: 124075, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36940767

RESUMO

Starch, as a widely available renewable resource, has the potential to be used in the production of controlled-release fertilizers (CRFs) that support sustainable agriculture. These CRFs can be formed by incorporating nutrients through coating or absorption, or by chemically modifying the starch to enhance its ability to carry and interact with nutrients. This review examines the various methods of creating starch-based CRFs, including coating, chemical modification, and grafting with other polymers. In addition, the mechanisms of controlled release in starch-based CRFs are discussed. Overall, the potential benefits of using starch-based CRFs in terms of resource efficiency and environmental protection are highlighted.


Assuntos
Fertilizantes , Amido , Preparações de Ação Retardada , Agricultura , Fenômenos Químicos
13.
J Mol Struct ; : 134135, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36101881

RESUMO

Analogs of pyrimidine and 1,3,4-oxadiazole are two well established class of molecules proven as potent antiviral and anticancer agents in the pharmaceutical industry. We envisioned designing new molecules where these two heterocycles were conjugated with the goal of enhancing biological activity. In this vein, we synthesized a series of novel pyrimidine-1,3,4-oxadiazole conjugated hybrid molecules as potential anticancer and antiviral agents. Herein, we present a new design for 5-fluorocytosine-1,3,4-oxadiazole hybrids (5a-h) connected via a methylene bridge. An efficient synthesis of new derivatives was established, and all compounds were fully characterized by NMR and MS. Eight compounds were evaluated for their cytotoxic activity against fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), lung carcinoma (A-549), and for their antiviral activity against SARS-CoV-2. Among all compounds tested, the compound 5e showed marked growth inhibition against all cell lines tested, particularly in HT-1080, with IC50 values of 19.56 µM. Meanwhile, all tested compounds showed no anti-SARS-CoV-2 activity, with EC50 >100 µM. The mechanism of cell death was investigated using Annexin V staining, caspase-3/7 activity, and analysis of cell cycle progression. The compound 5e induced apoptosis by the activation of caspase-3/7 and cell-cycle arrest in HT-1080 and A-549 cells at the G2M phase. The molecular docking suggested that the compound 5e activated caspase-3 via the formation of a stable complex protein-ligand.

14.
Nat Prod Bioprospect ; 12(1): 35, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36121517

RESUMO

Spiropyrimidines vanquish a significant situation in the field of heterocyclic chemistry, they are broadly utilized as an antibacterial, an inhibitor of multidrug opposition, or an antiplatelet and antithrombotic drug. Phosphate, the principal Moroccan mineral wealth occupies a vital spot in the economic sector and its valuation is a goal continually looked for. Among the conceivable outcomes of valorization, its utilization in heterogeneous catalysis which thought about an exceptionally encouraging new way. In this context, the focus on the reaction of the synthesis of spiropyrimidine, catalyzed by natural phosphate (NP) and by fluoroapatite (Fap), are used alone or doped by cobalt. These phosphate catalysts were characterized by XRD, IR and SEM, while the synthesized spiropyrimidine was identified by IR, GC-MS and NMR. The obtained yield with fluorapatite doped by cobalt (Co/Fap), at room temperature in ethanol is very high and shows a high impact performance induced by a synergistic effect compared to that of NP alone.

15.
ACS Omega ; 7(32): 28076-28092, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990427

RESUMO

In the present research, we describe a novel approach for in situ synthesis of cellulose microfibrils-grafted-hydroxyapatite (CMFs-g-HAPN (8%)) as an adsorbent using phosphate rock and date palm petiole wood as alternative and natural Moroccan resources. The synthesized CMFs-g-HAPN (8%) was extensively characterized by several instrumental techniques like thermogravimetry analysis, Fourier transform infrared spectroscopy, X-ray diffraction, 31P nuclear magnetic resonance, scanning electron microscopy, and Brunauer-Emmett-Teller analysis. The developed adsorbent was used to remove Pb(II) and Cu(II) from aqueous solutions. The influences of different adsorption parameters such as contact time, initial metal concentration, and amount of adsorbent were also investigated thoroughly using response surface methodology in order to optimize the batch adsorption process. The results confirmed that the adsorption process follows a polynomial quadratic model as high regression parameters were obtained (R 2 value = 99.8% for Pb(II) and R 2 value = 92.6% for Cu(II)). According to kinetics and isotherm modeling, the adsorption process of both studied ions onto CMFs-g-HAPN (8%) followed the pseudo-second-order model, and the equilibrium data at 25 °C were better fitted by the Langmuir model. The maximum adsorption capacities of the CMFs-g-HAPN (8%) adsorbent toward Pb(II) and Cu(II) are 143.80 and 83.05 mg/g, respectively. Moreover, the experiments of multicycle adsorption/desorption indicated that the CMFs-g-HAPN (8%) adsorbent could be regenerated and reused up to three cycles. The high adsorption capacities of both studied metals and regeneration performances of the CMFs-g-HAPN (8%) suggest its applicability as a competitive adsorbent for large-scale utilization.

16.
BMC Chem ; 15(1): 42, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193227

RESUMO

BACKGROUND: Silver orthophosphate (Ag3PO4) has received enormous attention over the past few years for its higher visible light photocatalytic performance as well as for various organic pollutants degradation in aqueous media. Therefore, considerable efforts have been made to the synthesis of Ag3PO4 with high catalytic efficiency, long lifetime, and using low-cost inorganic precursors. RESULTS: This article describes our efforts to develop a novel approach to synthesize of nanostructured silver phosphate (Ag3PO4) using phosphate rock as alternative and natural source of PO43- precursor ions. The catalytic experimental studies showed that the nanostructured Ag3PO4 exhibited excellent catalytic activity for reduction of p-nitrophenol in the presence of NaBH4 at room temperature. Furthermore, the antibacterial studies revealed that the obtained Ag3PO4 possess significant effect against E. Coli and S. Aureus bacteria. CONCLUSION: The obtained results make the nanostructured Ag3PO4 prepared from natural phosphate as a highly promising candidate to be used as efficient catalyst and antibacterial agent.

17.
Arch Pharm (Weinheim) ; 354(10): e2100146, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34128255

RESUMO

A new series of furo[2,3-d]pyrimidine-1,3,4-oxadiazole hybrid derivatives were synthesized via an environmentally friendly, multistep synthetic tool and a one-pot Songoashira-heterocyclization protocol using, for the first time, nanostructured palladium pyrophosphate (Na2 PdP2 O7 ) as a heterogeneous catalyst. Compounds 9a-c exhibited broad-spectrum activity with low micromolar EC50 values toward wild and mutant varicella-zoster virus (VZV) strains. Compound 9b was up to threefold more potent than the reference drug acyclovir against thymidine kinase-deficient VZV strains. Importantly, derivative 9b was not cytostatic at the maximum tested concentration (CC50 > 100 µM) and had an acceptable selectivity index value of up to 7.8. Moreover, all synthesized 1,3,4-oxadiazole hybrids were evaluated for their cytotoxic activity in four human cancer cell lines: fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), and lung carcinoma (A549). Data showed that compound 8f exhibits moderate cytotoxicity, with IC50 values ranging from 13.89 to 19.43 µM. Besides, compound 8f induced apoptosis through caspase 3/7 activation, cell death independently of the mitochondrial pathway, and cell cycle arrest in the S phase for HT1080 cells and the G1/M phase for A549 cells. Finally, the molecular docking study confirmed that the anticancer activity of the synthesized compounds is mediated by the activation of caspase 3.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Oxidiazóis/farmacologia , Pirimidinas/farmacologia , Aciclovir/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antivirais/síntese química , Antivirais/química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Herpesvirus Humano 3/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxidiazóis/síntese química , Oxidiazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
18.
Bioorg Chem ; 108: 104558, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358270

RESUMO

A novel series of homonucleosides and their double-headed analogs containing theophylline, 1,3,4-oxadiazole, and variant nucleobases was designed and synthesized. The new derivatives were fully characterized by HRMS, FT-IR, 1H NMR, and 13C NMR. The cytotoxic activities of all prepared compounds were screened in vitro against four cell lines, including fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), and lung carcinoma (A-549). The double-headed analogue 18 showed marked growth inhibition against all the cell lines tested, specifically in HT-1080, with an IC50 values of 17.08 ± 0.97 µM. The possible mechanism of apoptosis was investigated using Annexin V staining, caspase-3/7 activity, and analysis cell cycle progression. The compound 18 induced apoptosis through caspase-3/7 activation and cell-cycle arrest in HT-1080 and A-549 cells. The molecular docking confirms that the compound 18 activated caspase-3 via the formation of hydrogen bonds and hydrophobic interactions.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Simulação de Acoplamento Molecular , Nucleosídeos/farmacologia , Oxidiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Bioorg Med Chem Lett ; 30(19): 127438, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32736079

RESUMO

A new series of uracil analogues-1,2,4-oxadiazole hybrid derivatives were synthesized by a new, simple, and efficient method using for the first time HAP-SO3H as an heterogenous acid catalyst for the condensation and cyclization between amidoxime and aldehyde. The new derivatives were characterized by HRMS, FT-IR, 1H NMR, and 13C NMR spectroscopy techniques. The synthesized 1,2,4-oxadiazole hybrids were evaluated for their cytotoxic activity in five human cancer cell lines: melanoma (A-375), fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), and lung carcinoma (A-549). Data showed that compounds 22 and 23 were potent cytotoxic agents against HT-1080 and MFC-7 cells with IC50 inferior to 1 µM. The possible mechanism of apoptosis induction by the derivatives was investigated using Annexin V staining, caspase-3/7 activity, mitochondrial membrane potential measurement, and analysis cell cycle progression. The compound 22 induced apoptosis through caspase-3/7 activation and S-phase arrest in HT-1080 and A549 cells. The molecular docking showed that compound 22 activated the caspase-3 by forming a stable protein-ligand complex.


Assuntos
Antineoplásicos/farmacologia , Oxidiazóis/farmacologia , Uracila/análogos & derivados , Uracila/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/metabolismo , Ligação Proteica , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Relação Estrutura-Atividade , Uracila/metabolismo
20.
Nucleosides Nucleotides Nucleic Acids ; 39(8): 1088-1107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32397827

RESUMO

Herein, we report the synthetic strategies and characterization of some novel 1,3,4-oxadiazole homonucleoside analogs that are relevant to potential antitumor and cytotoxic activities. The structure of all compounds is confirmed using various spectroscopic methods such as 1H-NMR, 13C-NMR, HRMS, and FTIR. These compounds were evaluated against three human cancer cell lines (MCF-7, SKBR3, and HL60 Cell Line). Preliminary investigations showed that the cytotoxic activity was markedly dependent on the nucleobase. Introduction of 5-Iodouracil 4g and theobromine 6b proved to be extremely beneficial even they were more potent than the reference drug (DOX). Also, the synthesized compounds were tested for their antiviral activities against the human varicella-zoster virus (VZV). The product 4h was (6-azauracil derivative) more potent to the reference (acyclovir) against the deficient TK - VZV strain by about 2-fold. Finally, molecular docking suggested that the anticancer activities of compounds 6b and 4g mediated by inhibiting dual proteins EGFR/HER2 with low micromolar inhibition constant Ki range. The 1,3,4-oxadiazole homonucleosides showed a strong affinity to binding sites of target proteins by forming H-bond, carbon-hydrogen bond, Pi-anion, Pi-sulfur, Pi-sigma, alkyl, and Pi-alkyl interactions.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Desenho de Fármacos , Simulação de Acoplamento Molecular , Nucleosídeos/farmacologia , Oxidiazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Células HL-60 , Herpesvirus Humano 3/efeitos dos fármacos , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Oxidiazóis/síntese química , Oxidiazóis/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...