Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Commun ; 15(1): 5467, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937463

RESUMO

The genome of Mycobacterium tuberculosis encodes for a large repertoire of toxin-antitoxin systems. In the present study, MenT3 and MenT4 toxins belonging to MenAT subfamily of TA systems have been functionally characterized. We demonstrate that ectopic expression of these toxins inhibits bacterial growth and this is rescued upon co-expression of their cognate antitoxins. Here, we show that simultaneous deletion of menT3 and menT4 results in enhanced susceptibility of M. tuberculosis upon exposure to oxidative stress and attenuated growth in guinea pigs and mice. We observed reduced expression of transcripts encoding for proteins that are essential or required for intracellular growth in mid-log phase cultures of ΔmenT4ΔT3 compared to parental strain. Further, the transcript levels of proteins involved in efficient bacterial clearance were increased in lung tissues of ΔmenT4ΔT3 infected mice relative to parental strain infected mice. We show that immunization of mice and guinea pigs with ΔmenT4ΔT3 confers significant protection against M. tuberculosis infection. Remarkably, immunization of mice with ΔmenT4ΔT3 results in increased antigen-specific TH1 bias and activated memory T cell response. We conclude that MenT3 and MenT4 are important for M. tuberculosis pathogenicity and strains lacking menT3 and menT4 have the potential to be explored further as vaccine candidates.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Tuberculose , Animais , Cobaias , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Camundongos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Tuberculose/microbiologia , Feminino , Pulmão/microbiologia , Pulmão/patologia , Pulmão/imunologia , Deleção de Genes , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Camundongos Endogâmicos C57BL , Vacinas contra a Tuberculose/imunologia , Estresse Oxidativo , Virulência/genética
2.
Eur J Immunol ; 54(7): e2350624, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38655818

RESUMO

Pathogenic infections cause thymic atrophy, perturb thymic T-cell development, and alter immunological response. Previous studies reported dysregulated T-cell function and lymphopenia in coronavirus disease-19 (COVID-19). However, immunopathological changes in the thymus associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have not been elucidated. Here, we report that SARS-CoV-2 infects thymocytes, and induces CD4+CD8+ (double positive; DP) T-cell apoptosis leading to thymic atrophy and loss of peripheral TCR repertoire in K18-hACE2 transgenic mice. Infected thymus led to increased CD44+CD25- T-cells, indicating an early arrest in the T-cell maturation pathway. Thymic atrophy was notably higher in male hACE2-Tg mice than in females and involved an upregulated de-novo synthesis pathway of thymic glucocorticoid. Further, IFN-γ was crucial for thymic atrophy, as anti-IFN-γ -antibody neutralization blunted thymic involution. Therapeutic use of Remdesivir also rescued thymic atrophy. While the Omicron variant and its sub-lineage BA.5 variant caused marginal thymic atrophy, the delta variant of SARS-CoV-2 exhibited severe thymic atrophy characterized by severely depleted DP T-cells. Recently characterized broadly SARS-CoV-2 neutralizing monoclonal antibody P4A2 was able to rescue thymic atrophy and restore the thymic maturation pathway of T-cells. Together, we report SARS-CoV-2-associated thymic atrophy resulting from impaired T-cell maturation pathway which may contribute to dyregulated T cell response during COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , Atrofia , COVID-19 , Interferon gama , Camundongos Transgênicos , SARS-CoV-2 , Timo , Animais , COVID-19/imunologia , COVID-19/patologia , SARS-CoV-2/imunologia , Timo/patologia , Timo/imunologia , Camundongos , Interferon gama/metabolismo , Interferon gama/imunologia , Atrofia/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Feminino , Humanos , Masculino , Timócitos/imunologia , Apoptose , Linfócitos T CD8-Positivos/imunologia
3.
J Fluoresc ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613710

RESUMO

Recent advances in detection and diagnostic tools have improved understanding and identification of plant physiological and biochemical processes. Effective and safe Surface Enhanced Raman Spectroscopy (SERS) can find objects quickly and accurately. Raman enhancement amplifies the signal by 1014-1015 to accurately quantify plant metabolites at the molecular level. This paper shows how to use functionalized perovskite substrates for SERS. These perovskite substrates have lots of surface area, intense Raman scattering, and high sensitivity and specificity. These properties eliminate sample matrix component interference. This study identified research gaps on perovskite substrates' effectiveness, precision, and efficiency in biological metabolite detection compared to conventional substrates. This article details the synthesis and use of functionalized perovskites for plant metabolites measurement. It analyzes their pros and cons in this context. The manuscript analyzes perovskite-based SERS substrates, including single-crystalline perovskites with enhanced optoelectronic properties. This manuscript aims to identify this study gap by comprehensively reviewing the literature and using it to investigate plant metabolite detection in future studies.

4.
Anal Bioanal Chem ; 416(2): 497-508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38001372

RESUMO

Pesticides that linger in the environment and ecosystems for an extended period can cause severe and dangerous health problems in humans. To detect pesticides in foods, the development of high-sensitivity and quick screening technologies was required. This research investigated the performance of Au@Ag NPs with varying thicknesses of the silver shell for detecting trace quantities of thiabendazole (TBZ) in apples using surface-enhanced Raman spectroscopy (SERS). The Au@Ag NPs were synthesized by coating 32 nm gold seeds with different thicknesses of silver shell ranging from 2.4 to 8.7 nm, achieved by adjusting the incorporation of AgNO3 and ascorbic acid. The optimized Au@Ag NPs with a 7.3 nm silver shell demonstrated outstanding SERS activity, high sensitivity, and a detection limit of 0.05 µg/mL for TBZ. The R2 values, representing the goodness of fit, were found to be 0.990 and 0.986 for standard and real TBZ samples, respectively, indicating a strong correlation between the measured signal and the TBZ concentration. The recovery analysis showed a reliable and accurate detection capability (96 to 105%), suggesting good reliability and accuracy of the SERS-based detection using the optimal Au@Ag NPs. Overall, this research highlights the potential of SERS with optimal Au@Ag NPs for rapid and effective monitoring of pesticides in the food industry.


Assuntos
Malus , Nanopartículas Metálicas , Praguicidas , Humanos , Malus/química , Tiabendazol/análise , Prata/química , Reprodutibilidade dos Testes , Ecossistema , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Praguicidas/análise , Ouro/química
5.
Antiviral Res ; 220: 105743, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949319

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2, lead to mild to severe respiratory illness and resulted in 6.9 million deaths worldwide. Although vaccines are effective in preventing COVID-19, they may not be sufficient to protect immunocompromised individuals from this respiratory illness. Moreover, novel emerging variants of SARS-CoV-2 pose a risk of new COVID-19 waves. Therefore, identification of effective antivirals is critical in controlling SARS and other coronaviruses, such as MERS-CoV. We show that Fangchinoline (Fcn), a bisbenzylisoquinoline alkaloid, inhibits replication of SARS-CoV, SARS-CoV-2, and MERS-CoV in a range of in vitro assays, by blocking entry. Therapeutic use of Fcn inhibited viral loads in the lungs, and suppressed associated airway inflammation in hACE2. Tg mice and Syrian hamster infected with SARS-CoV-2. Combination of Fcn with remdesivir (RDV) or an anti-leprosy drug, Clofazimine, exhibited synergistic antiviral activity. Compared to Fcn, its synthetic derivative, MK-04-003, more effectively inhibited SARS-CoV-2 and its variants B.1.617.2 and BA.5 in mice. Taken together these data demonstrate that Fcn is a pan beta coronavirus inhibitor, which possibly can be used to combat novel emerging coronavirus diseases.


Assuntos
Benzilisoquinolinas , COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Camundongos , Animais , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Pandemias , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico
6.
Eur J Med Res ; 28(1): 421, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821945

RESUMO

OBJECTIVES: To study clinical disease outcomes in both human and animal models to understand the pathogenicity of omicron compared to the delta variant. METHODS: In this cross-sectional observational study, clinical outcomes of adults who tested positive at 2 testing centres in Delhi National Capital Region between January 2022 and March 2022 (omicron-infected; N = 2998) were compared to a similar geographical cohort (delta-infected; N = 3292). In addition, disease course and outcomes were studied in SARS-CoV-2-infected golden Syrian hamsters and K-18 humanized ACE2 transgenic mice. RESULTS: Omicron variant infection was associated with a milder clinical course [83% (95% CI 61, 94) reduced risk of severity compared against delta] adjusting for vaccination, age, sex, prior infection and occupational risk. This correlated with lower disease index and vir comparing omicron with other variants in animal models. CONCLUSIONS: Infections caused by the omicron variant were milder compared to those caused by the delta variant independent of previous immunity.


Assuntos
COVID-19 , Adulto , Animais , Cricetinae , Camundongos , Humanos , Estudos Transversais , SARS-CoV-2/genética , Progressão da Doença
7.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37765142

RESUMO

In the current study, we evaluated the efficacy of Ayush-64 (A64), a polyherbal formulation containing Alstonia scholaris (L.) R. Br. (A. scholaris), Caesalpinia crista L. (C. crista), Picrorhiza kurroa Royle ex Benth (P. kurroa), and Swertia chirata (Roxb.) H. Karst. (S. chirata) against COVID-19 in a Syrian hamster infection model. Preventative use of A64 resulted in the late-phase recovery of body weight loss in severe acquired respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected hamsters, suppression of pro-inflammatory cytokines, and blunted pulmonary pathology. In addition, we also investigated the efficacy of individual ingredients of A64, viz., A. scholaris, C. crista, P. kurroa, and S. chirata, in the hamster model. The hamster challenge data showed robust anti-viral and immunomodulatory potential in A. scholaris, followed by P. kurroa. However, C. crista and S. chirata of A64 showed prominent immunomodulatory potential without limiting the lung viral load. In order to better understand the immunomodulatory potential of these herbal extracts, we used an in vitro assay of helper T cell differentiation and found that A. scholaris mediated a more profound suppression of Th1, Th2, and Th17 cell differentiation as compared to A64 and other ingredients. Taken together, our animal study data identifies the ameliorative potential of A64 in mitigating coronavirus disease-19 (COVID-19) pulmonary pathology. A. scholaris, a constituent extract of A64, showed relatively higher anti-viral and immunomodulatory potential against COVID-19. The present study warrants further investigations to identify the active pharmaceutical ingredients of A. scholaris for further studies.

8.
Commun Biol ; 6(1): 935, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704701

RESUMO

A recently emerged sub-lineage of Omicron, BA.5, together with BA.4, caused a fifth wave of coronavirus disease (COVID-19) in South Africa and subsequently emerged as a predominant strain globally due to its high transmissibility. The lethality of BA.5 infection has not been studied in an acute hACE2 transgenic (hACE2.Tg) mouse model. Here, we investigated tissue-tropism and immuno-pathology induced by BA.5 infection in hACE2.Tg mice. Our data show that intranasal infection of BA.5 in hACE2.Tg mice resulted in attenuated pulmonary infection and pathology with diminished COVID-19-induced clinical and pathological manifestations. BA.5, similar to Omicron (B.1.1.529), infection led to attenuated production of inflammatory cytokines, anti-viral response and effector T cell response as compared to the ancestral strain of SARS-CoV-2, Wuhan-Hu-1. We show that mice recovered from B.1.1.529 infection showed robust protection against BA.5 infection associated with reduced lung viral load and pathology. Together, our data provide insights as to why BA.5 infection escapes previous SARS-CoV-2 exposure induced-T cell immunity but may result in milder immuno-pathology and alleviated chances of re-infectivity in Omicron-recovered individuals.


Assuntos
COVID-19 , Camundongos , Animais , Camundongos Transgênicos , SARS-CoV-2 , Citocinas , Modelos Animais de Doenças
9.
Nat Commun ; 14(1): 4060, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429848

RESUMO

SARS-CoV-2 infection is known for causing broncho-alveolar inflammation. Interleukin 9 (IL-9) induces airway inflammation and bronchial hyper responsiveness in respiratory viral illnesses and allergic inflammation, however, IL-9 has not been assigned a pathologic role in COVID-19. Here we show, in a K18-hACE2 transgenic (ACE2.Tg) mouse model, that IL-9 contributes to and exacerbates viral spread and airway inflammation caused by SARS-CoV-2 infection. ACE2.Tg mice with CD4+ T cell-specific deficiency of the transcription factor Forkhead Box Protein O1 (Foxo1) produce significantly less IL-9 upon SARS-CoV-2 infection than the wild type controls and they are resistant to the severe inflammatory disease that characterises the control mice. Exogenous IL-9 increases airway inflammation in Foxo1-deficient mice, while IL-9 blockade reduces and suppresses airway inflammation in SARS-CoV-2 infection, providing further evidence for a Foxo1-Il-9 mediated Th cell-specific pathway playing a role in COVID-19. Collectively, our study provides mechanistic insight into an important inflammatory pathway in SARS-CoV-2 infection, and thus represents proof of principle for the development of host-directed therapeutics to mitigate disease severity.


Assuntos
COVID-19 , Interleucina-9 , Animais , Camundongos , Interleucina-9/genética , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Inflamação
10.
Front Mol Biosci ; 10: 1133123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006620

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has caused millions of infections and deaths worldwide. Limited treatment options and the threat from emerging variants underline the need for novel and widely accessible therapeutics. G-quadruplexes (G4s) are nucleic acid secondary structures known to affect many cellular processes including viral replication and transcription. We identified heretofore not reported G4s with remarkably low mutation frequency across >5 million SARS-CoV-2 genomes. The G4 structure was targeted using FDA-approved drugs that can bind G4s - Chlorpromazine (CPZ) and Prochlorperazine (PCZ). We found significant inhibition in lung pathology and lung viral load of SARS-CoV-2 challenged hamsters when treated with CPZ or PCZ that was comparable to the widely used antiviral drug Remdesivir. In support, in vitro G4 binding, inhibition of reverse transcription from RNA isolated from COVID-infected humans, and attenuated viral replication and infectivity in Vero cell cultures were clear in case of both CPZ and PCZ. Apart from the wide accessibility of CPZ/PCZ, targeting relatively invariant nucleic acid structures poses an attractive strategy against viruses like SARS-CoV-2, which spread fast and accumulate mutations quickly.

11.
Front Immunol ; 14: 1138215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960064

RESUMO

Cytokine release syndrome (CRS) due to severe acute respiratory coronavirus-2 (SARS-CoV-2) infection leads to life-threatening pneumonia which has been associated with coronavirus disease (COVID-19) pathologies. Centuries-old Asian traditional medicines such as Withania somnifera (L.) Dunal (WS) and Tinospora cordifolia (Willd.) Miers (TC) possess potent immunomodulatory effects and were used by the AYUSH ministry, in India during the COVID-19 pandemic. In the present study, we investigated WS and TC's anti-viral and immunomodulatory efficacy at the human equivalent doses using suitable in vitro and in vivo models. While both WS and TC showed immuno-modulatory potential, WS showed robust protection against loss in body weight, viral load, and pulmonary pathology in the hamster model of SARS-CoV2. In vitro pretreatment of mice and human neutrophils with WS and TC had no adverse effect on PMA, calcium ionophore, and TRLM-induced ROS generation, phagocytosis, bactericidal activity, and NETs formation. Interestingly, WS significantly suppressed the pro-inflammatory cytokines-induced Th1, Th2, and Th17 differentiation. We also used hACE2 transgenic mice to further investigate the efficacy of WS against acute SARS-CoV2 infection. Prophylactic treatment of WS in the hACE2 mice model showed significant protection against body weight loss, inflammation, and the lung viral load. The results obtained indicate that WS promoted the immunosuppressive environment in the hamster and hACE2 transgenic mice models and limited the worsening of the disease by reducing inflammation, suggesting that WS might be useful against other acute viral infections. The present study thus provides pre-clinical efficacy data to demonstrate a robust protective effect of WS against COVID-19 through its broader immunomodulatory activity.


Assuntos
COVID-19 , Tinospora , Withania , Animais , Camundongos , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Neutrófilos , Pandemias , RNA Viral , SARS-CoV-2 , Diferenciação Celular , Inflamação/tratamento farmacológico , Modelos Teóricos , Camundongos Transgênicos
12.
Bioresour Bioprocess ; 10(1): 90, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38647622

RESUMO

Sustainable agricultural practices help to manage and use natural resources efficiently. Due to global climate and geospatial land design, soil texture, soil-water content (SWC), and other parameters vary greatly; thus, real time, robust, and accurate soil analytical measurements are difficult to be developed. Conventional statistical analysis tools take longer to analyze and interpret data, which may have delayed a crucial decision. Therefore, this review paper is presented to develop the researcher's insight toward robust, accurate, and quick soil analysis using artificial intelligence (AI), deep learning (DL), and machine learning (ML) platforms to attain robustness in SWC and soil texture analysis. Machine learning algorithms, such as random forests, support vector machines, and neural networks, can be employed to develop predictive models based on available soil data and auxiliary environmental variables. Geostatistical techniques, including kriging and co-kriging, help interpolate and extrapolate soil property values to unsampled locations, improving the spatial representation of the data set. The false positivity in SWC results and bugs in advanced detection techniques are also evaluated, which may lead to wrong agricultural practices. Moreover, the advantages of AI data processing over general statistical analysis for robust and noise-free results have also been discussed in light of smart irrigation technologies. Conclusively, the conventional statistical tools for SWCs and soil texture analysis are not enough to practice and manage ergonomic land management. The broader geospatial non-numeric data are more suitable for AI processing that may soon help soil scientists develop a global SWC database.

13.
PLoS Pathog ; 18(12): e1010994, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508467

RESUMO

The emergence of new variants of SARS-CoV-2 necessitates unremitting efforts to discover novel therapeutic monoclonal antibodies (mAbs). Here, we report an extremely potent mAb named P4A2 that can neutralize all the circulating variants of concern (VOCs) with high efficiency, including the highly transmissible Omicron. The crystal structure of the P4A2 Fab:RBD complex revealed that the residues of the RBD that interact with P4A2 are a part of the ACE2-receptor-binding motif and are not mutated in any of the VOCs. The pan coronavirus pseudotyped neutralization assay confirmed that the P4A2 mAb is specific for SARS-CoV-2 and its VOCs. Passive administration of P4A2 to K18-hACE2 transgenic mice conferred protection, both prophylactically and therapeutically, against challenge with VOCs. Overall, our data shows that, the P4A2 mAb has immense therapeutic potential to neutralize the current circulating VOCs. Due to the overlap between the P4A2 epitope and ACE2 binding site on spike-RBD, P4A2 may also be highly effective against a number of future variants.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/química , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/terapia , Camundongos Transgênicos , Testes de Neutralização , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética
14.
Front Immunol ; 13: 945583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238303

RESUMO

Severe coronavirus disease (COVID-19) is accompanied by acute respiratory distress syndrome and pulmonary pathology, and is presented mostly with an inflammatory cytokine release, a dysregulated immune response, a skewed neutrophil/lymphocyte ratio, and a hypercoagulable state. Though vaccinations have proved effective in reducing the COVID-19-related mortality, the limitation of the use of vaccine against immunocompromised individuals, those with comorbidity, and emerging variants remains a concern. In the current study, we investigate for the first time the efficacy of the Glycyrrhiza glabra (GG) extract, a potent immunomodulator, against SARS-CoV-2 infection in hamsters. Prophylactic treatment with GG showed protection against loss in body weight and a 35%-40% decrease in lung viral load along with reduced lung pathology in the hamster model. Remarkably, GG reduced the mRNA expression of pro-inflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1). In vitro, GG acted as a potent immunomodulator by reducing Th2 and Th17 differentiation and IL-4 and IL-17A cytokine production. In addition, GG also showed robust potential to suppress ROS, mtROS, and NET generation in a concentration-dependent manner in both human polymorphonuclear neutrophils (PMNs) and murine bone marrow-derived neutrophils (BMDNs). Taken together, we provide evidence for the protective efficacy of GG against COVID-19 and its putative mechanistic insight through its immunomodulatory properties. Our study provides the proof of concept for GG efficacy against SARS-CoV-2 using a hamster model and opens the path for further studies aimed at identifying the active ingredients of GG and its efficacy in COVID-19 clinical cases.


Assuntos
COVID-19 , Glycyrrhiza , Animais , Cricetinae , Citocinas/metabolismo , Glycyrrhiza/metabolismo , Humanos , Interleucina-17 , Interleucina-4 , Camundongos , Inibidor 1 de Ativador de Plasminogênio , RNA Mensageiro , Espécies Reativas de Oxigênio , SARS-CoV-2
15.
ACS Infect Dis ; 8(10): 2119-2132, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36129193

RESUMO

The engineering of virus-like particles (VLPs) is a viable strategy for the development of vaccines and for the identification of therapeutic targets without using live viruses. Here, we report the generation and characterization of quadruple-antigen SARS-CoV-2 VLPs. VLPs were generated by transient transfection of two expression cassettes in adherent HEK293T cells─one cassette containing Mpro for processing of three structural proteins (M, E, and N), and the second cassette expressing the Spike protein. Further characterization revealed that the VLPs retain close morphological and antigenic similarity with the native virus and also bind strongly to the SARS-CoV-2 receptor hACE-2 in an in vitro binding assay. Interestingly, the VLPs were found to internalize into U87-MG cells through cholesterol-rich domains in a dynamin-dependent process. Finally, our results showed that mice immunized with VLPs induce robust humoral and cellular immune responses mediated by enhanced levels of IL-4, IL-17, and IFNγ. Taken together, our results demonstrate that VLPs mimic the native virus and induce a strong immune response, indicating the possible use of these particles as an alternative vaccine candidate against SARS-CoV-2. VLPs can also be effective in mapping the initial stages of virus entry and screening inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Células HEK293 , Humanos , Interleucina-17 , Interleucina-4 , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
16.
Front Chem ; 10: 965761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046725

RESUMO

Abscisic acid (ABA) is a plant hormone, which plays an important role in plant growth, crop cultivation and modern agricultural engineering management. Accordingly, the detection of ABA content combined with new techniques and methods has become a more and more popular problem in the field of agricultural engineering. In this work, a SERRS and fluorescence dual-function sensor based on the fluorescence quenching and Raman enhancement properties of gold nanorods (AuNRs) was developed, and applied to the detection of plant hormone ABA. The dual-function reporter molecule Rhodamine isothiocyanate (RBITC) and complementary DNA (cDNA) were modified on AuNRs (AuNRs@RBITC@cDNA) as signal probes and aptamer modified magnetic nanoparticles (Fe3O4MNPs@Apt) as capture probes. Through the specific recognition of ABA aptamer and its complementary chains, an dual-function aptamer sensor based on SERRS and fluorescence was constructed. When ABA molecules were present in the detection system, the signal probes were detached from the capture probes due to the preferential binding between aptamer and ABA molecules. SERS signal of the reporter molecules appeared in the supernatant after magnetic separation, and it increased with the increase of ABA concentration. If the etching agent that can etch AuNRs was added to the supernatant, the AuNRs was etching disappeared, then the signal molecules fall off from the AuNRs, and the fluorescence signal intensity would recovered. The intensity of fluorescence signal also increased with the increase of ABA concentration. Thus, the quantitative relationship between ABA concentration and SERRS intensity and fluorescence intensity of signal molecules was established. The linear range of SERRS detection was 100 fM-0.1 nM, the detection limit was 38 fM; The linear range of fluorescence detection was 1 pM-100 nM, the detection limit is 0.33 p.m. The constructed dual-effect sensor was used in the recovery laboratory of real ABA samples, the recovery rate was up to 85-108%.

17.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-493843

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has caused millions of infections and deaths worldwide. Limited treatment options and the threat from emerging variants underline the need for novel and widely accessible therapeutics. G-quadruplexes (G4s) are nucleic acid secondary structures known to affect many cellular processes including viral replication and transcription. We identified heretofore not reported G4s with remarkably low mutation frequency across >5 million SARS-CoV-2 genomes. The G4 structure was targeted using FDA-approved drugs that can bind G4s - Chlorpromazine (CPZ) and Prochlorperazine (PCZ). We found significant inhibition in lung pathology and lung viral load of SARS-CoV-2 challenged hamsters when treated with CPZ, PCZ that was comparable to the widely used antiviral drug Remdesivir. In support, in vitro G4 binding, inhibition of reverse transcription from RNA isolated from COVID-infected humans, and attenuated viral replication and infectivity in Vero cell cultures were clear in case of both CPZ/PCZ. Apart from the wide accessibility of CPZ/PCZ, targeting relatively invariant nucleic acid structures poses an attractive strategy against fast mutating viruses like SARS-CoV-2.

18.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-492112

RESUMO

Severe coronavirus disease (COVID-19) is accompanied with acute respiratory distress syndrome & pulmonary pathology, and is presented mostly with inflammatory cytokine release, dysregulated immune response, skewed neutrophil/ lymphocyte ratio, and hypercoagulable state. Though vaccinations have proved effective in reducing the COVID-19 related mortality, the limitation of use of vaccine against immunocompromised, comorbidity, and emerging variants remains a concern. In the current study we investigate for the first-time the efficacy of Glycyrrhiza glabra (GG) extract, a potent immunomodulator, against SARS-CoV-2 infection in hamsters. Prophylactic treatment with GG showed protection against loss in body weight and 35-40% decrease in lung viral load along with reduced lung pathology in the hamster model. Remarkably, GG reduced the mRNA expression of pro-inflammatory cytokines and Plasminogen activator inhibito-1 (PAI-1). In-vitro, GG acted as potent immunomodulator by reducing Th2 and Th17 differentiation and IL-4 and IL-17A cytokine production. In addition, GG also showed robust potential to suppress ROS, mtROS and NETs generation in a concentration dependent manner in both human polymorphonuclear neutrophils (PMNs) and murine bone marrow derived neutrophils (BMDNs). Taken together, we provide evidence for the protective efficacy of GG against COVID-19 and its putative mechanistic insight, which might be developed as a future immunomodulatory approach against various pathologies with high cytokine production, aberrant neutrophil activation including coronavirus infection.

19.
Int J Biol Macromol ; 209(Pt A): 1359-1367, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35469951

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has a significant burden on the economy and healthcare around the world. Vaccines are the most effective tools to fight infectious diseases by containing the spread of the disease. The current vaccines against SARS-CoV-2 are mostly based on the spike protein of SARS-CoV-2, which is large and has many immune-dominant non-neutralizing epitopes that may effectively skew the antibody response towards non-neutralizing antibodies. Here, we have explored the possibility of immune-focusing the receptor binding motif (RBM) of the spike protein of SARS-CoV-2 that induces mostly neutralizing antibodies in natural infection or in vacinees. The result shows that the scaffolded RBM can bind to Angiotensin Converting Enzyme 2 (ACE2) although with low affinity and induces a strong antibody response in mice. The immunized sera can bind both, the receptor binding domain (RBD) and the spike protein, which holds the RBM in its natural context. Sera from the immunized mice showed robust interferon γ response but poor neutralization of SARS-CoV-2 suggesting presence of a predominant T cell epitope on scaffolded RBM. Together, we provide a strategy for inducing strong antigenic T cell response which could be exploited further for future vaccine designing and development against SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos , Humanos , Camundongos , Pandemias/prevenção & controle , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química
20.
PLoS Pathog ; 18(4): e1010465, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35482816

RESUMO

Although efficacious vaccines have significantly reduced the morbidity and mortality of COVID-19, there remains an unmet medical need for treatment options, which monoclonal antibodies (mAbs) can potentially fill. This unmet need is exacerbated by the emergence and spread of SARS-CoV-2 variants of concern (VOCs) that have shown some resistance to vaccine responses. Here we report the isolation of five neutralizing mAbs from an Indian convalescent donor, out of which two (THSC20.HVTR04 and THSC20.HVTR26) showed potent neutralization of SARS-CoV-2 VOCs at picomolar concentrations, including the Delta variant (B.1.617.2). One of these (THSC20.HVTR26) also retained activity against the Omicron variant. These two mAbs target non-overlapping epitopes on the receptor-binding domain (RBD) of the spike protein and prevent virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Furthermore, the mAb cocktail demonstrated protection against the Delta variant at low antibody doses when passively administered in the K18 hACE2 transgenic mice model, highlighting their potential as a cocktail for prophylactic and therapeutic applications. Developing the capacity to rapidly discover and develop mAbs effective against highly transmissible pathogens like coronaviruses at a local level, especially in a low- and middle-income country (LMIC) such as India, will enable prompt responses to future pandemics as an important component of global pandemic preparedness.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Camundongos , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA