Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 88, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238332

RESUMO

The northeastern Indian Ocean exhibits distinct hydrographic characteristics influenced by various local and remote forces. Variations in these driving factors may alter the physiochemical properties of seawater, such as dissolved oxygen levels, and affect the diversity and function of microbial communities. How the microbial communities change across water depths spanning a dissolved oxygen gradient has not been well understood. Here we employed both 16S rDNA amplicon and metagenomic sequencing approaches to study the microbial communities collected from different water depths along the E87 transect in the northeastern Indian Ocean. Samples were collected from the surface, Deep Chlorophyll Maximum (DCM), Oxygen Minimum Zone (OMZ), and bathypelagic layers. Proteobacteria were prevalent throughout the water columns, while Thermoproteota were found to be abundant in the aphotic layers. A total of 675 non-redundant metagenome-assembled genomes (MAGs) were constructed, spanning 21 bacterial and 5 archaeal phyla. The community structure and genomic information provided by this dataset offer valuable resources for the analysis of microbial biogeography and metabolism in the northeastern Indian Ocean.


Assuntos
Bactérias , Metagenoma , Bactérias/genética , Bactérias/metabolismo , Oceano Índico , Oxigênio/metabolismo , Água do Mar/microbiologia , Água
2.
Front Microbiol ; 13: 923451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003943

RESUMO

Laccases are ligninolytic enzymes that play a crucial role in various biological processes of filamentous fungi, including fruiting-body formation and lignin degradation. Lignin degradation is a complex process and its degradation in Schizophyllum commune is greatly affected by the availability of oxygen. Here, a total of six putative laccase genes (ScLAC) were identified from the S. commune 20R-7-F01 genome. These genes, which include three typical Cu-oxidase domains, can be classified into three groups based on phylogenetic analysis. ScLAC showed distinct intron-exon structures and conserved motifs, suggesting the conservation and diversity of ScLAC in gene structures. Additionally, the number and type of cis-acting elements, such as substrate utilization-, stress-, cell division- and transcription activation-related cis-elements, varied between ScLAC genes, suggesting that the transcription of laccase genes in S. commune 20R-7-F01 could be induced by different substrates, stresses, or other factors. The SNP analysis of resequencing data demonstrated that the ScLAC of S. commune inhabiting deep subseafloor sediments were significantly different from those of S. commune inhabiting terrestrial environments. Similarly, the large variation of conserved motifs number and arrangement of laccase between subseafloor and terrestrial strains indicated that ScLAC had a diverse structure. The expression of ScLAC5 and ScLAC6 genes was significantly up-regulated in lignin/lignite medium, suggesting that these two laccase genes might be involved in fungal utilization and degradation of lignite and lignin under anaerobic conditions. These findings might help in understanding the function of laccase in white-rot fungi and could provide a scientific basis for further exploring the relationship between the LAC family and anaerobic degradation of lignin by S. commune.

3.
Chemosphere ; 303(Pt 2): 135062, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35618067

RESUMO

Fungi represent the dominant eukaryotic group in the deep biosphere and well-populated in the anaerobic coal-bearing sediments up to ∼2.5 km below seafloor (kmbsf). But whether fungi are able to degrade and utilize coal to sustain growth in the anaerobic sub-seafloor environment remains unknown. Based on biodegradation investigation, we found that fungi isolated from sub-seafloor sediments at depths of ∼1.3-∼2.5 kmbsf showed a broad range of polycyclic aromatic hydrocarbons (PAHs) anaerobic degradation rates (3-25%). Among them, the white-rot fungus Schizophyllium commune 20R-7-F01 exhibited the highest degradation, 25%, 18% and 13%, of phenanthrene (Phe), pyrene (Pyr) and benzo[a]pyrene (BaP); respectively, after 10 days of anaerobic incubation. Phe was utilized well and about 40.4% was degraded by the fungus, after 20 days of anaerobic incubation. Moreover, the ability of fungi to degrade PAHs was positively correlated with the anaerobic growth of fungi, indicating that fungi can use PAHs as a sole carbon source under anoxic conditions. In addition, fungal degradation of PAHs was found to be related to the activity of carboxylases, but little or nothing to do with the activity of lignin modifying enzymes such as laccase (Lac), manganese peroxidase (MnP) and lignin peroxidase (LiP). These results suggest that sub-seafloor fungi possess a special mechanism to degrade and utilize PAHs as a carbon and energy source under anaerobic conditions. Furthermore, fungi living in sub-seafloor sediments may not only play an important role in carbon cycle in the anaerobic environments of the deep biosphere, but also be able to persist in deep sediment below seafloor for millions of years by using PAHs or related compounds as carbon and energy source. This anaerobic biodegradation ability could make these fungi suitable candidates for bioremediation of toxic pollutants such as PAHs from anoxic environments.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Anaerobiose , Biodegradação Ambiental , Carbono , Carvão Mineral , Fungos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise
4.
Environ Microbiol ; 23(11): 6940-6952, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34431210

RESUMO

Fungi have been reported to be the dominant eukaryotic group in anoxic sub-seafloor sediments, but how fungi subsist in the anoxic sub-marine sedimental environment is rarely understood. Our previous study demonstrated that the fungus, Schizophyllum commune 20R-7-F01 isolated from a ~2 km sediment below the seafloor, can grow and produce primordia in the complete absence of oxygen with enhanced production of branched-chain amino acids (BCAAs), but the primordia cannot be developed into fruit bodies without oxygen. Here, we present the individual and synergistic effects of oxygen and BCAAs on the fruit-body development of this strain. It was found that the fungus required a minimum oxygen concentration of 0.5% pO2 to generate primordia and 1% pO2 to convert primordia into mature fruit body. However, if BCAAs (20 mM) were added to the medium, the primordium could be developed into fruit body at a lower oxygen concentration up to 0.5% pO2 where genes fst4 and c2h2 playing an important role in compensating oxygen deficiency. Moreover, under hypoxic conditions, the fungus showed an increase in mitochondrial number and initiation of auto-phagocytosis. These findings suggest that the fruit-body formation of S. commune may have multiple mechanisms, including energy and amino acid metabolism in response to oxygen concentrations.


Assuntos
Schizophyllum , Aminoácidos de Cadeia Ramificada , Sedimentos Geológicos , Crescimento e Desenvolvimento , Oxigênio/metabolismo , Schizophyllum/metabolismo
5.
Environ Microbiol ; 23(2): 1174-1185, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33215844

RESUMO

Fungi dominated the eukaryotic group in the anaerobic sedimentary environment below the ocean floor where they play an essential ecological role. However, the adaptive mechanism of fungi to these anaerobic environments is still unclear. Here, we reported the anaerobic adaptive mechanism of Schizophyllum commune 20R-7-F01, isolated from deep coal-bearing sediment down to ~2 km below the seafloor, through biochemical, metabolomic and transcriptome analyses. The fungus grows well, but the morphology changes obviously and the fruit body develops incompletely under complete hypoxia. Compared with aerobic conditions, the fungus has enhanced branched-chain amino acid biosynthesis and ethanol fermentation under anaerobic conditions, and genes related to these metabolisms have been significantly up-regulated. Additionally, the fungus shows novel strategies for synthesizing ethanol by utilizing both glycolysis and ethanol fermentation pathways. These findings suggest that the subseafloor fungi may adopt multiple mechanisms to cope with lack of oxygen.


Assuntos
Sedimentos Geológicos/microbiologia , Schizophyllum/isolamento & purificação , Schizophyllum/fisiologia , Água do Mar/microbiologia , Aminoácidos de Cadeia Ramificada/biossíntese , Anaerobiose , Carvão Mineral/análise , Etanol/metabolismo , Fermentação , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Sedimentos Geológicos/química , Schizophyllum/genética , Schizophyllum/metabolismo , Água do Mar/química
6.
Mar Drugs ; 18(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861953

RESUMO

Growing microbial resistance to existing drugs and the search for new natural products of pharmaceutical importance have forced researchers to investigate unexplored environments, such as extreme ecosystems. The deep-sea (>1000 m below water surface) has a variety of extreme environments, such as deep-sea sediments, hydrothermal vents, and deep-sea cold region, which are considered to be new arsenals of natural products. Organisms living in the extreme environments of the deep-sea encounter harsh conditions, such as high salinity, extreme pH, absence of sun light, low temperature and oxygen, high hydrostatic pressure, and low availability of growth nutrients. The production of secondary metabolites is one of the strategies these organisms use to survive in such harsh conditions. Fungi growing in such extreme environments produce unique secondary metabolites for defense and communication, some of which also have clinical significance. Despite being the producer of many important bioactive molecules, deep-sea fungi have not been explored thoroughly. Here, we made a brief review of the structure, biological activity, and distribution of secondary metabolites produced by deep-sea fungi in the last five years.


Assuntos
Fungos/química , Água do Mar/microbiologia , Organismos Aquáticos , Produtos Biológicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...