Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Hydrometeorol ; 25(5): 709-733, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38994349

RESUMO

Hydrological predictions at subseasonal-to-seasonal (S2S) time scales can support improved decision-making in climate-dependent sectors like agriculture and hydropower. Here, we present an S2S hydrological forecasting system (S2S-HFS) for western tropical South America (WTSA). The system uses the global NASA Goddard Earth Observing System S2S meteorological forecast system (GEOS-S2S) in combination with the generalized analog regression downscaling algorithm and the NASA Land Information System (LIS). In this implementation study, we evaluate system performance for 3-month hydrological forecasts for the austral autumn season (March-May) using ensemble hindcasts for 2002-17. Results indicate that the S2S-HFS generally offers skill in predictions of monthly precipitation up to 1-month lead, evapotranspiration up to 2 months lead, and soil moisture content up to 3 months lead. Ecoregions with better hindcast performance are located either in the coastal lowlands or in the Amazon lowland forest. We perform dedicated analysis to understand how two important teleconnections affecting the region are represented in the S2S-HFS: El Niño-Southern Oscillation (ENSO) and the Antarctic Oscillation (AAO). We find that forecast skill for all variables at 1-month lead is enhanced during the positive phase of ENSO and the negative phase of AAO. Overall, this study indicates that there is meaningful skill in the S2S-HFS for many ecoregions in WTSA, particularly for long memory variables such as soil moisture. The skill of the precipitation forecast, however, decays rapidly after forecast initialization, a phenomenon that is consistent with S2S meteorological forecasts over much of the world.

2.
Sci Total Environ ; : 174753, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025140

RESUMO

There is growing evidence that high ambient temperatures are associated with a range of adverse health outcomes. Further evidence suggests differences in rural versus non-rural populations' vulnerability to heat-related adverse health outcomes. The current project aims to 1) refine estimated associations between maximum daily heat index (HI) and emergency department (ED) visits in regions of Virginia, and 2) compare associations between maximum daily HI and ED visits in rural versus non-rural areas of Virginia and within those areas, for persons 65 years of age and older versus those younger than 65 years. Our study utilized 16,873,213 healthcare visits from Virginia facilities reporting to the Virginia Department of Health syndromic surveillance system between May and September 2015-2022. Federal Office of Rural Health Policy defined rural areas were assigned to patient home ZIP code. The estimated daily maximum HI at which ED visits begin to rise varies between 25 °C and 33 °C across climate zones and regions of Virginia. Across all regions, estimated ED visits attributable to days with maximum HI above 25.7 °C were higher in rural areas (3.7 %, 95 % CI: 3.5 %, 3.9 %) versus in non-rural areas (3.1 %, 95 % CIs: 3.0 %, 3.2 %). Patients aged 0-64 years had a higher estimated heat attributable fraction of ED visits (4.2 %, 95 % CI: 4.0 %, 4.3 %) than patients 65 years and older (3.1 %, 95 % CI: 2.9 %, 3.4 %). Rural patients older than 65 have a higher estimated fraction of heat attributable ED visits (2.7 %, 95 % CI: 2.2 %, 3.1 %) compared to non-rural patients 65 years and older (1.5 %, 95 % CI: 1.3 %, 1.8 %). State-level syndromic surveillance data can be used to optimize heat warning messaging based on expected changes in healthcare visits given a set of meteorological variables, and can be further refined based on climate, rurality and age.

3.
PLOS Clim ; 3(4)2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027120

RESUMO

Malaria transmission is influenced by climate and land use/land cover change (LULC). This study examines the impact of climate and LULC on malaria risk in the Ecuadorian Amazon. Weekly malaria surveillance data between 2008 and 2019 from Ecuador's Ministry of Public Health were combined with hydrometeorological and LULC data. Cross-correlation analyses identified time lags. Bayesian spatiotemporal models estimated annual LULC rates of change (ARC) by census area and assessed the effects on Plasmodium vivax and Plasmodium falciparum incidence. ARC for the five land cover classes (forest, agriculture, urban, shrub vegetation, water) ranged from -1 to 4% with agriculture increasing across areas. Forest and shrub vegetation ARC were significantly associated with both Plasmodium vivax and Plasmodium falciparum. Temperature and terrestrial water content showed consistent negative relationships with both species. Precipitation had varying effects on Plasmodium vivax (null) and Plasmodium falciparum (increase) incidence. Shrubs and forest expansion, increased temperature, and terrestrial water content reduced malaria incidence, while increased precipitation had varying effects. Relationships between malaria, LULC, and climate are complex, influencing risk profiles. These findings aid decision-making and guide further research in the region.

4.
Sci Total Environ ; 941: 173710, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830423

RESUMO

Legionella is an opportunistic waterborne pathogen that is difficult to eradicate in colonized drinking water pipes. Legionella control is further challenged by aging water infrastructure and lack of evidence-based guidance for building treatment. This study assessed multiple premise water remediation approaches designed to reduce Legionella pneumophila within a residential building located in an aging, urban drinking water system over a two-year period. Samples (n = 745) were collected from hot and cold-water lines and quantified via most probable number culture. Building-level treatment approaches included three single heat shocks, three single chemical shocks, and continuous low-level chemical disinfection in the potable water system. The building was highly colonized with L. pneumophila with 71 % L. pneumophila positivity. Single heat shocks had a statistically significant L. pneumophila reduction one day post treatment but no significant L. pneumophila reduction at one week, two weeks, and four weeks post treatment. The first two chemical shocks resulted in statistically significant L. pneumophila reduction at two days and four weeks post treatment, but there was a significant L. pneumophila increase at four weeks following the third chemical shock. Continuous low-level chemical disinfection resulted in statistically significant L. pneumophila reduction at ten weeks post treatment implementation. This demonstrates that in a building highly colonized with L. pneumophila, sustained remediation is best achieved using continuous low-level chemical treatment.


Assuntos
Água Potável , Microbiologia da Água , Purificação da Água , Água Potável/microbiologia , Purificação da Água/métodos , Desinfecção/métodos , Legionella pneumophila , Abastecimento de Água , Legionella , Recuperação e Remediação Ambiental/métodos
5.
BMJ Open ; 14(4): e078911, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626977

RESUMO

INTRODUCTION: Understanding human mobility's role in malaria transmission is critical to successful control and elimination. However, common approaches to measuring mobility are ill-equipped for remote regions such as the Amazon. This study develops a network survey to quantify the effect of community connectivity and mobility on malaria transmission. METHODS: We measure community connectivity across the study area using a respondent driven sampling design among key informants who are at least 18 years of age. 45 initial communities will be selected: 10 in Brazil, 10 in Ecuador and 25 in Peru. Participants will be recruited in each initial node and administered a survey to obtain data on each community's mobility patterns. Survey responses will be ranked and the 2-3 most connected communities will then be selected and surveyed. This process will be repeated for a third round of data collection. Community network matrices will be linked with each country's malaria surveillance system to test the effects of mobility on disease risk. ETHICS AND DISSEMINATION: This study protocol has been approved by the institutional review boards of Duke University (USA), Universidad San Francisco de Quito (Ecuador), Universidad Peruana Cayetano Heredia (Peru) and Universidade Federal Minas Gerais (Brazil). Results will be disseminated in communities by the end of the study.


Assuntos
Redes Comunitárias , Malária , Humanos , Peru/epidemiologia , Equador/epidemiologia , Brasil/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle
6.
Geohealth ; 8(2): e2024GH001022, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38371354

RESUMO

In 2023 human populations experienced multiple record-breaking climate events, with widespread impacts on human health and well-being. These events include extreme heat domes, drought, severe storms, flooding, and wildfires. Due to inherent lags in the climate system, we can expect such extremes to continue for multiple decades after reaching net zero carbon emissions. Unfortunately, despite these significant current and future impacts, funding for research in climate and health has lagged behind that for other geoscience and biomedical research. While some initial efforts from funding agencies are evident, there is still a significant need to increase the resources available for multidisciplinary research in the face of this issue. As a group of experts at this important intersection, we call for a more concerted effort to encourage interdisciplinary and policy-relevant investigations into the detrimental health effects of continued climate change.

7.
PLoS One ; 19(2): e0297775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38412156

RESUMO

BACKGROUND: Diarrhea remains a leading cause of childhood illness throughout the world that is increasing due to climate change and is caused by various species of ecologically sensitive pathogens. The emerging Planetary Health movement emphasizes the interdependence of human health with natural systems, and much of its focus has been on infectious diseases and their interactions with environmental and human processes. Meanwhile, the era of big data has engendered a public appetite for interactive web-based dashboards for infectious diseases. However, enteric infectious diseases have been largely overlooked by these developments. METHODS: The Planetary Child Health & Enterics Observatory (Plan-EO) is a new initiative that builds on existing partnerships between epidemiologists, climatologists, bioinformaticians, and hydrologists as well as investigators in numerous low- and middle-income countries. Its objective is to provide the research and stakeholder community with an evidence base for the geographical targeting of enteropathogen-specific child health interventions such as novel vaccines. The initiative will produce, curate, and disseminate spatial data products relating to the distribution of enteric pathogens and their environmental and sociodemographic determinants. DISCUSSION: As climate change accelerates there is an urgent need for etiology-specific estimates of diarrheal disease burden at high spatiotemporal resolution. Plan-EO aims to address key challenges and knowledge gaps by making and disseminating rigorously obtained, generalizable disease burden estimates. Pre-processed environmental and EO-derived spatial data products will be housed, continually updated, and made publicly available for download to the research and stakeholder communities. These can then be used as inputs to identify and target priority populations living in transmission hotspots and for decision-making, scenario-planning, and disease burden projection. STUDY REGISTRATION: PROSPERO protocol #CRD42023384709.


Assuntos
Doenças Transmissíveis , Países em Desenvolvimento , Criança , Humanos , Pesquisa Interdisciplinar , Saúde da Criança , Doenças Transmissíveis/epidemiologia , Fatores de Risco , Diarreia/epidemiologia , Internet
9.
Res Sq ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36993232

RESUMO

Background: Diarrhea remains a leading cause of childhood illness throughout the world that is increasing due to climate change and is caused by various species of ecologically sensitive pathogens. The emerging Planetary Health movement emphasizes the interdependence of human health with natural systems, and much of its focus has been on infectious diseases and their interactions with environmental and human processes. Meanwhile, the era of big data has engendered a public appetite for interactive web-based dashboards for infectious diseases. However, enteric infectious diseases have been largely overlooked by these developments. Methods: The Planetary Child Health and Enterics Observatory (Plan-EO) is a new initiative that builds on existing partnerships between epidemiologists, climatologists, bioinformaticians, and hydrologists as well as investigators in numerous low- and middle-income countries. Its objective is to provide the research and stakeholder community with an evidence base for the geographical targeting of enteropathogen-specific child health interventions such as novel vaccines. The initiative will produce, curate, and disseminate spatial data products relating to the distribution of enteric pathogens and their environmental and sociodemographic determinants. Discussion: As climate change accelerates there is an urgent need for etiology-specific estimates of diarrheal disease burden at high spatiotemporal resolution. Plan-EO aims to address key challenges and knowledge gaps by making rigorously obtained, generalizable disease burden estimates freely available and accessible to the research and stakeholder communities. Pre-processed environmental and EO-derived spatial data products will be housed, continually updated, and made publicly available to the research and stakeholder communities both within the webpage itself and for download. These inputs can then be used to identify and target priority populations living in transmission hotspots and for decision-making, scenario-planning, and disease burden projection. Study registration: PROSPERO protocol #CRD42023384709.

10.
Otolaryngol Clin North Am ; 57(2): 309-317, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37923592

RESUMO

There is mounting evidence that climate change is having a significant influence on exacerbations of airway disease. We herein explore the physical factors of carbon dioxide, temperature increases, and humidity on intensifying allergen and fungal growth, and worsening air quality. The direct influence of these factors on promoting allergic rhinitis, chronic rhinosinusitis, and allergic fungal rhinosinusitis is reviewed.


Assuntos
Rinite Alérgica , Sinusite , Humanos , Mudança Climática , Nariz , Alérgenos
11.
medRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076857

RESUMO

Objectives: Understanding human mobility's role on malaria transmission is critical to successful control and elimination. However, common approaches to measuring mobility are ill-equipped for remote regions such as the Amazon. This study develops a network survey to quantify the effect of community connectivity and mobility on malaria transmission. Design: A community-level network survey. Setting: We collect data on community connectivity along three river systems in the Amazon basin: the Pastaza river corridor spanning the Ecuador-Peru border; and the Amazon and Javari river corridors spanning the Brazil-Peru border. Participants: We interviewed key informants in Brazil, Ecuador, and Peru, including from indigenous communities: Shuar, Achuar, Shiwiar, Kichwa, Ticuna, and Yagua. Key informants are at least 18 years of age and are considered community leaders. Primary outcome: Weekly, community-level malaria incidence during the study period. Methods: We measure community connectivity across the study area using a respondent driven sampling design. Forty-five communities were initially selected: 10 in Brazil, 10 in Ecuador, and 25 in Peru. Participants were recruited in each initial node and administered a survey to obtain data on each community's mobility patterns. Survey responses were ranked and the 2-3 most connected communities were then selected and surveyed. This process was repeated for a third round of data collection. Community network matrices will be linked with eadch country's malaria surveillance system to test the effects of mobility on disease risk. Findings: To date, 586 key informants were surveyed from 126 communities along the Pastaza river corridor. Data collection along the Amazon and Javari river corridors is ongoing. Initial results indicate that network sampling is a superior method to delineate migration flows between communities. Conclusions: Our study provides measures of mobility and connectivity in rural settings where traditional approaches are insufficient, and will allow us to understand mobility's effect on malaria transmission.

12.
Nat Commun ; 14(1): 7828, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030605

RESUMO

Drought is often thought to reduce ecosystem photosynthesis. However, theory suggests there is potential for increased photosynthesis during meteorological drought, especially in energy-limited ecosystems. Here, we examine the response of photosynthesis (gross primary productivity, GPP) to meteorological drought across the water-energy limitation spectrum. We find a consistent increase in eddy covariance GPP during spring drought in energy-limited ecosystems (83% of the energy-limited sites). Half of spring GPP sensitivity to precipitation was predicted solely from the wetness index (R2 = 0.47, p < 0.001), with weaker relationships in summer and fall. Our results suggest GPP increases during spring drought for 55% of vegetated Northern Hemisphere lands ( >30° N). We then compare these results to terrestrial biosphere model outputs and remote sensing products. In contrast to trends detected in eddy covariance data, model mean GPP always declined under spring precipitation deficits after controlling for air temperature and light availability. While remote sensing products captured the observed negative spring GPP sensitivity in energy-limited ecosystems, terrestrial biosphere models proved insufficiently sensitive to spring precipitation deficits.


Assuntos
Secas , Ecossistema , Carbono , Estações do Ano , Fotossíntese
13.
medRxiv ; 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37502988

RESUMO

Legionella is an opportunistic waterborne pathogen that is difficult to eradicate in colonized drinking water pipes. Legionella control is further challenged by aging water infrastructure and lack of evidence-based guidance for building treatment. This study assessed multiple premise water remediation approaches designed to reduce Legionella pneumophila (Lp) within a residential building located in an aging, urban drinking water system over a two-year period. Samples (n=745) were collected from hot and cold-water lines and quantified via most probable number culture. Building-level treatment approaches included three single heat shocks (HS), three single chemical shocks (CS), and continuous low-level chemical disinfection (CCD) in the potable water system. The building was highly colonized with Lp with 71% Lp positivity. Single HS had a statistically significant Lp reduction one day post treatment but no significant Lp reduction one, two, and four weeks post treatment. The first two CS resulted in statistically significant Lp reduction at two days and four weeks post treatment, but there was a significant Lp increase at four weeks following the third CS. CCD resulted in statistically significant Lp reduction ten weeks post treatment implementation. This demonstrates that in a building highly colonized with Lp, sustained remediation is best achieved using CCD.

14.
Sci Data ; 10(1): 367, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286690

RESUMO

An impressive number of COVID-19 data catalogs exist. However, none are fully optimized for data science applications. Inconsistent naming and data conventions, uneven quality control, and lack of alignment between disease data and potential predictors pose barriers to robust modeling and analysis. To address this gap, we generated a unified dataset that integrates and implements quality checks of the data from numerous leading sources of COVID-19 epidemiological and environmental data. We use a globally consistent hierarchy of administrative units to facilitate analysis within and across countries. The dataset applies this unified hierarchy to align COVID-19 epidemiological data with a number of other data types relevant to understanding and predicting COVID-19 risk, including hydrometeorological data, air quality, information on COVID-19 control policies, vaccine data, and key demographic characteristics.


Assuntos
COVID-19 , Humanos , Poluição do Ar , COVID-19/epidemiologia , Pandemias , Meio Ambiente
15.
Geohealth ; 7(4): e2022GH000710, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091294

RESUMO

Remotely sensed inundation may help to rapidly identify areas in need of aid during and following floods. Here we evaluate the utility of daily remotely sensed flood inundation measures and estimate their congruence with self-reported home flooding and health outcomes collected via the Texas Flood Registry (TFR) following Hurricane Harvey. Daily flood inundation for 14 days following the landfall of Hurricane Harvey was acquired from FloodScan. Flood exposure, including number of days flooded and flood depth was assigned to geocoded home addresses of TFR respondents (N = 18,920 from 47 counties). Discordance between remotely-sensed flooding and self-reported home flooding was measured. Modified Poisson regression models were implemented to estimate risk ratios (RRs) for adverse health outcomes following flood exposure, controlling for potential individual level confounders. Respondents whose home was in a flooded area based on remotely-sensed data were more likely to report injury (RR = 1.5, 95% CI: 1.27-1.77), concentration problems (1.36, 95% CI: 1.25-1.49), skin rash (1.31, 95% CI: 1.15-1.48), illness (1.29, 95% CI: 1.17-1.43), headaches (1.09, 95% CI: 1.03-1.16), and runny nose (1.07, 95% CI: 1.03-1.11) compared to respondents whose home was not flooded. Effect sizes were larger when exposure was estimated using respondent-reported home flooding. Near-real time remote sensing-based flood products may help to prioritize areas in need of assistance when on the ground measures are not accessible.

16.
Geohealth ; 7(3): e2022GH000727, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36960326

RESUMO

Brazil has been severely affected by the COVID-19 pandemic. Temperature and humidity have been purported as drivers of SARS-CoV-2 transmission, but no consensus has been reached in the literature regarding the relative roles of meteorology, governmental policy, and mobility on transmission in Brazil. We compiled data on meteorology, governmental policy, and mobility in Brazil's 26 states and one federal district from June 2020 to August 2021. Associations between these variables and the time-varying reproductive number (R t ) of SARS-CoV-2 were examined using generalized additive models fit to data from the entire 15-month period and several shorter, 3-month periods. Accumulated local effects and variable importance metrics were calculated to analyze the relationship between input variables and R t . We found that transmission is strongly influenced by unmeasured sources of between-state heterogeneity and the near-recent trajectory of the pandemic. Increased temperature generally was associated with decreased transmission and increased specific humidity with increased transmission. However, the impacts of meteorology, policy, and mobility on R t varied in direction, magnitude, and significance across our study period. This time variance could explain inconsistencies in the published literature to date. While meteorology weakly modulates SARS-CoV-2 transmission, daily or seasonal weather variations alone will not stave off future surges in COVID-19 cases in Brazil. Investigating how the roles of environmental factors and disease control interventions may vary with time should be a deliberate consideration of future research on the drivers of SARS-CoV-2 transmission.

17.
Lancet Reg Health Am ; 20: 100477, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36970494

RESUMO

Background: Although malaria control investments worldwide have resulted in dramatic declines in transmission since 2000, progress has stalled. In the Amazon, malaria resurgence has followed withdrawal of Global Fund support of the Project for Malaria Control in Andean Border Areas (PAMAFRO). We estimate intervention-specific and spatially-explicit effects of the PAMAFRO program on malaria incidence across the Loreto region of Peru, and consider the influence of the environmental risk factors in the presence of interventions. Methods: We conducted a retrospective, observational, spatial interrupted time series analysis of malaria incidence rates among people reporting to health posts across Loreto, Peru between the first epidemiological week of January 2001 and the last epidemiological week of December 2016. Model inference is at the smallest administrative unit (district), where the weekly number of diagnosed cases of Plasmodium vivax and Plasmodium falciparum were determined by microscopy. Census data provided population at risk. We include as covariates weekly estimates of minimum temperature and cumulative precipitation in each district, as well as spatially- and temporally-lagged malaria incidence rates. Environmental data were derived from a hydrometeorological model designed for the Amazon. We used Bayesian spatiotemporal modeling techniques to estimate the impact of the PAMAFRO program, variability in environmental effects, and the role of climate anomalies on transmission after PAMAFRO withdrawal. Findings: During the PAMAFRO program, incidence of P. vivax declined from 42.8 to 10.1 cases/1000 people/year. Incidence for P. falciparum declined from 14.3 to 2.5 cases/1000 people/year over this same period. The effects of PAMAFRO-supported interventions varied both by geography and species of malaria. Interventions were only effective in districts where interventions were also deployed in surrounding districts. Further, interventions diminished the effects of other prevailing demographic and environmental risk factors. Withdrawal of the program led to a resurgence in transmission. Increasing minimum temperatures and variability and intensity of rainfall events from 2011 onward and accompanying population displacements contributed to this resurgence. Interpretation: Malaria control programs must consider the climate and environmental scope of interventions to maximize effectiveness. They must also ensure financial sustainability to maintain local progress and commitment to malaria prevention and elimination efforts, as well as to offset the effects of environmental change that increase transmission risk. Funding: National Aeronautics and Space Administration, National Institutes of Health, Bill and Melinda Gates Foundation.

18.
IJID Reg ; 6: 29-41, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36437857

RESUMO

Background: The COVID-19 pandemic has caused societal disruption globally, and South America has been hit harder than other lower-income regions. This study modeled the effects of six weather variables on district-level SARS-CoV-2 reproduction numbers (Rt ) in three contiguous countries of tropical Andean South America (Colombia, Ecuador, and Peru), adjusting for environmental, policy, healthcare infrastructural and other factors. Methods: Daily time-series data on SARS-CoV-2 infections were sourced from the health authorities of the three countries at the smallest available administrative level. Rt values were calculated and merged by date and unit ID with variables from a unified COVID-19 dataset and other publicly available sources for May-December, 2020. Generalized additive models were fitted. Findings: Relative humidity and solar radiation were inversely associated with SARS-CoV-2 Rt . Days with radiation above 1000 kJ/m2 saw a 1.3% reduction in Rt , and those with humidity above 50% recorded a 0.9% reduction in Rt . Transmission was highest in densely populated districts, and lowest in districts with poor healthcare access and on days with lowest population mobility. Wind speed, temperature, region, aggregate government policy response, and population age structure had little impact. The fully adjusted model explained 4.3% of Rt variance. Interpretation: Dry atmospheric conditions of low humidity increase district-level SARS-CoV-2 reproduction numbers, while higher levels of solar radiation decrease district-level SARS-CoV-2 reproduction numbers - effects that are comparable in magnitude to population factors like lockdown compliance. Weather monitoring could be incorporated into disease surveillance and early warning systems in conjunction with more established risk indicators and surveillance measures. Funding: NASA's Group on Earth Observations Work Programme (16-GEO16-0047).

19.
Int Forum Allergy Rhinol ; 13(5): 865-876, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36575965

RESUMO

BACKGROUND: The escalating negative impact of climate change on our environment has the potential to result in significant morbidity of rhinologic diseases. METHODS: Evidence based review of examples of rhinologic diseases including allergic and nonallergic rhinitis, chronic rhinosinusitis, and allergic fungal rhinosinusitis was performed. RESULTS: The lower socioeconomic population, including historically oppressed groups, will be disproportionately affected. CONCLUSIONS: We need a systematic approach to improve healthcare database infrastructure and funding to promote diverse scientific collaboration to address these healthcare needs.


Assuntos
Hipersensibilidade , Rinite , Sinusite , Humanos , Mudança Climática , Rinite/epidemiologia , Sinusite/epidemiologia , Doença Crônica
20.
Front Epidemiol ; 3: 1128501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38455887

RESUMO

Epidemiologic investigations of extreme precipitation events (EPEs) often rely on observations from the nearest weather station to represent individuals' exposures, and due to structural factors that determine the siting of weather stations, levels of measurement error and misclassification bias may differ by race, class, and other measures of social vulnerability. Gridded climate datasets provide higher spatial resolution that may improve measurement error and misclassification bias. However, similarities in the ability to identify EPEs among these types of datasets have not been explored. In this study, we characterize the overall and temporal patterns of agreement among three commonly used meteorological data sources in their identification of EPEs in all census tracts and counties in the conterminous United States over the 1991-2020 U.S. Climate Normals period and evaluate the association between sociodemographic characteristics with agreement in EPE identification. Daily precipitation measurements from weather stations in the Global Historical Climatology Network (GHCN) and gridded precipitation estimates from the Parameter-elevation Relationships on Independent Slopes Model (PRISM) and the North American Land Data Assimilation System (NLDAS) were compared in their ability to identify EPEs defined as the top 1% of precipitation events or daily precipitation >1 inch. Agreement among these datasets is fair to moderate from 1991 to 2020. There are spatial and temporal differences in the levels of agreement between ground stations and gridded climate datasets in their detection of EPEs in the United States from 1991 to 2020. Spatial variation in agreement is most strongly related to a location's proximity to the nearest ground station, with areas furthest from a ground station demonstrating the lowest levels of agreement. These areas have lower socioeconomic status, a higher proportion of Native American population, and higher social vulnerability index scores. The addition of ground stations in these areas may increase agreement, and future studies intending to use these or similar data sources should be aware of the limitations, biases, and potential for differential misclassification of exposure to EPEs. Most importantly, vulnerable populations should be engaged to determine their priorities for enhanced surveillance of climate-based threats so that community-identified needs are met by any future improvements in data quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA