Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 125(5): 659-69, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23417712

RESUMO

Recurrent mutations affecting the histone H3.3 residues Lys27 or indirectly Lys36 are frequent drivers of pediatric high-grade gliomas (over 30% of HGGs). To identify additional driver mutations in HGGs, we investigated a cohort of 60 pediatric HGGs using whole-exome sequencing (WES) and compared them to 543 exomes from non-cancer control samples. We identified mutations in SETD2, a H3K36 trimethyltransferase, in 15% of pediatric HGGs, a result that was genome-wide significant (FDR = 0.029). Most SETD2 alterations were truncating mutations. Sequencing the gene in this cohort and another validation cohort (123 gliomas from all ages and grades) showed SETD2 mutations to be specific to high-grade tumors affecting 15% of pediatric HGGs (11/73) and 8% of adult HGGs (5/65) while no SETD2 mutations were identified in low-grade diffuse gliomas (0/45). Furthermore, SETD2 mutations were mutually exclusive with H3F3A mutations in HGGs (P = 0.0492) while they partly overlapped with IDH1 mutations (4/14), and SETD2-mutant tumors were found exclusively in the cerebral hemispheres (P = 0.0055). SETD2 is the only H3K36 trimethyltransferase in humans, and SETD2-mutant tumors showed a substantial decrease in H3K36me3 levels (P < 0.001), indicating that the mutations are loss-of-function. These data suggest that loss-of-function SETD2 mutations occur in older children and young adults and are specific to HGG of the cerebral cortex, similar to the H3.3 G34R/V and IDH mutations. Taken together, our results suggest that mutations disrupting the histone code at H3K36, including H3.3 G34R/V, IDH1 and/or SETD2 mutations, are central to the genesis of hemispheric HGGs in older children and young adults.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Mutação/genética , Adolescente , Adulto , Fatores Etários , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Criança , Estudos de Coortes , Exoma , Glioma/metabolismo , Glioma/patologia , Histona Metiltransferases , Humanos , Lactente , Metilação , Pessoa de Meia-Idade , Gradação de Tumores , Adulto Jovem
2.
Nature ; 482(7384): 226-31, 2012 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-22286061

RESUMO

Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Glioblastoma/genética , Histonas/genética , Mutação/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Bases , Criança , Cromatina/metabolismo , Proteínas Correpressoras , DNA Helicases/genética , Análise Mutacional de DNA , Exoma/genética , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/genética , Telômero/genética , Proteína Supressora de Tumor p53/genética , Proteína Nuclear Ligada ao X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...