Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 32(1): 10-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37938797

RESUMO

COVID-19, the disease caused by SARS-CoV-2, has caused significant morbidity and mortality worldwide. The betacoronavirus continues to evolve with global health implications as we race to learn more to curb its transmission, evolution, and sequelae. The focus of this review, the second of a three-part series, is on the biological effects of the SARS-CoV-2 virus on post-acute disease in the context of tissue and organ adaptations and damage. We highlight the current knowledge and describe how virological, animal, and clinical studies have shed light on the mechanisms driving the varied clinical diagnoses and observations of COVID-19 patients. Moreover, we describe how investigations into SARS-CoV-2 effects have informed the understanding of viral pathogenesis and provide innovative pathways for future research on the mechanisms of viral diseases.


Assuntos
COVID-19 , Animais , Humanos , SARS-CoV-2
3.
Lancet Reg Health Am ; 25: 100566, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37564420

RESUMO

Background: Pulmonary fibrosis is characterized by lung parenchymal destruction and can increase morbidity and mortality. Pulmonary fibrosis commonly occurs following hospitalization for SARS-CoV-2 infection. As there are medications that modify pulmonary fibrosis risk, we investigated whether distinct pharmacotherapies (amiodarone, cancer chemotherapy, corticosteroids, and rituximab) are associated with differences in post-COVID-19 pulmonary fibrosis incidence. Methods: We used the National COVID-19 Cohort Collaboration (N3C) Data Enclave, which aggregates and harmonizes COVID-19 data across the United States, to assess pulmonary fibrosis incidence documented at least 60 days after COVID-19 diagnosis among adults hospitalized between January 1st, 2020 and July 6th, 2022 without pre-existing pulmonary fibrosis. We used propensity scores to match pre-COVID-19 drug-exposed and unexposed cohorts (1:1) based on covariates with known influence on pulmonary fibrosis incidence, and estimated the association of drug exposure with risk for post-COVID-19 pulmonary fibrosis. Sensitivity analyses considered pulmonary fibrosis incidence documented at least 30- or 90-days post-hospitalization and pulmonary fibrosis incidence in the COVID-19-negative N3C population. Findings: Among 5,923,394 patients with COVID-19, we analyzed 452,951 hospitalized adults, among whom pulmonary fibrosis incidence was 1.1 per 100-person-years. 277,984 hospitalized adults with COVID-19 were included in our primary analysis, among whom all drug exposed cohorts were well-matched to unexposed cohorts (standardized mean differences <0.1). The post-COVID-19 pulmonary fibrosis incidence rate ratio (IRR) was 2.5 (95% CI 1.2-5.1, P = 0.01) for rituximab, 1.6 (95% CI 1.3-2.0, P < 0.0001) for chemotherapy, and 1.2 (95% CI 1.0-1.3, P = 0.02) for corticosteroids. Amiodarone exposure had no significant association with post-COVID-19 pulmonary fibrosis (IRR = 0.8, 95% CI 0.6-1.1, P = 0.24). In sensitivity analyses, pre-COVID-19 corticosteroid use was not consistently associated with post-COVID-19 pulmonary fibrosis. In the COVID-19 negative hospitalized population (n = 1,240,461), pulmonary fibrosis incidence was lower overall (0.6 per 100-person-years) and for patients exposed to all four drugs. Interpretation: Recent rituximab or cancer chemotherapy before COVID-19 infection in hospitalized patients is associated with increased risk for post-COVID-19 pulmonary fibrosis. Funding: The analyses described in this publication were conducted with data or tools accessed through the NCATS N3C Data Enclave https://covid.cd2h.org and N3C Attribution & Publication Policy v1.2-2020-08-25b supported by NIHK23HL146942, NIHK08HL150291, NIHK23HL148387, NIHUL1TR002389, NCATSU24 TR002306, and a SECURED grant from the Walder Foundation/Center for Healthcare Delivery Science and Innovation, University of Chicago. WFP received a grant from the Greenwall Foundation. This research was possible because of the patients whose information is included within the data and the organizations (https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories) and scientists who have contributed to the on-going development of this community resource (https://doi.org/10.1093/jamia/ocaa196).

4.
Sci Transl Med ; 15(708): eabq1533, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556555

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)-encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response. In autopsy tissues from patients with COVID-19, SARS-CoV-2 was no longer present, and mitochondrial gene transcription had recovered in the lungs. However, nDNA mitochondrial gene expression remained suppressed in autopsy tissue from the heart and, to a lesser extent, kidney, and liver, whereas mitochondrial DNA transcription was induced and host-immune defense pathways were activated. During early SARS-CoV-2 infection of hamsters with peak lung viral load, mitochondrial gene expression in the lung was minimally perturbed but was down-regulated in the cerebellum and up-regulated in the striatum even though no SARS-CoV-2 was detected in the brain. During the mid-phase SARS-CoV-2 infection of mice, mitochondrial gene expression was starting to recover in mouse lungs. These data suggest that when the viral titer first peaks, there is a systemic host response followed by viral suppression of mitochondrial gene transcription and induction of glycolysis leading to the deployment of antiviral immune defenses. Even when the virus was cleared and lung mitochondrial function had recovered, mitochondrial function in the heart, kidney, liver, and lymph nodes remained impaired, potentially leading to severe COVID-19 pathology.


Assuntos
COVID-19 , Cricetinae , Humanos , Animais , Camundongos , COVID-19/patologia , SARS-CoV-2 , Roedores , Genes Mitocondriais , Pulmão/patologia
5.
Sci Rep ; 12(1): 21125, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476670

RESUMO

To better understand the potential relationship between COVID-19 disease and hologenome microbial community dynamics and functional profiles, we conducted a multivariate taxonomic and functional microbiome comparison of publicly available human bronchoalveolar lavage fluid (BALF) metatranscriptome samples amongst COVID-19 (n = 32), community acquired pneumonia (CAP) (n = 25), and uninfected samples (n = 29). We then performed a stratified analysis based on mortality amongst the COVID-19 cohort with known outcomes of deceased (n = 10) versus survived (n = 15). Our overarching hypothesis was that there are detectable and functionally significant relationships between BALF microbial metatranscriptomes and the severity of COVID-19 disease onset and progression. We observed 34 functionally discriminant gene ontology (GO) terms in COVID-19 disease compared to the CAP and uninfected cohorts, and 21 GO terms functionally discriminant to COVID-19 mortality (q < 0.05). GO terms enriched in the COVID-19 disease cohort included hydrolase activity, and significant GO terms under the parental terms of biological regulation, viral process, and interspecies interaction between organisms. Notable GO terms associated with COVID-19 mortality included nucleobase-containing compound biosynthetic process, organonitrogen compound catabolic process, pyrimidine-containing compound biosynthetic process, and DNA recombination, RNA binding, magnesium and zinc ion binding, oxidoreductase activity, and endopeptidase activity. A Dirichlet multinomial mixtures clustering analysis resulted in a best model fit using three distinct clusters that were significantly associated with COVID-19 disease and mortality. We additionally observed discriminant taxonomic differences associated with COVID-19 disease and mortality in the genus Sphingomonas, belonging to the Sphingomonadacae family, Variovorax, belonging to the Comamonadaceae family, and in the class Bacteroidia, belonging to the order Bacteroidales. To our knowledge, this is the first study to evaluate significant differences in taxonomic and functional signatures between BALF metatranscriptomes from COVID-19, CAP, and uninfected cohorts, as well as associating these taxa and microbial gene functions with COVID-19 mortality. Collectively, while this data does not speak to causality nor directionality of the association, it does demonstrate a significant relationship between the human microbiome and COVID-19. The results from this study have rendered testable hypotheses that warrant further investigation to better understand the causality and directionality of host-microbiome-pathogen interactions.


Assuntos
COVID-19 , Humanos , Líquido da Lavagem Broncoalveolar , Ontologia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...