Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Osteoporos Rep ; 21(5): 624-631, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421571

RESUMO

PURPOSE OF REVIEW: This review aims to summarize (i) the latest evidence on cranial neural crest cells (CNCC) contribution to craniofacial development and ossification; (ii) the recent discoveries on the mechanisms responsible for their plasticity; and (iii) the newest procedures to ameliorate maxillofacial tissue repair. RECENT FINDINGS: CNCC display a remarkable differentiation potential that exceeds the capacity of their germ layer of origin. The mechanisms by which they expand their plasticity was recently described. Their ability to participate to craniofacial bone development and regeneration open new perspectives for treatments of traumatic craniofacial injuries or congenital syndromes. These conditions can be life-threatening, require invasive maxillofacial surgery and can leave deep sequels on our health or quality of life. With accumulating evidence showing how CNCC-derived stem cells potential can ameliorate craniofacial reconstruction and tissue repair, we believe a deeper understanding of the mechanisms regulating CNCC plasticity is essential to ameliorate endogenous regeneration and improve tissue repair therapies.


Assuntos
Crista Neural , Qualidade de Vida , Humanos , Diferenciação Celular/fisiologia , Osteogênese
2.
Aging (Albany NY) ; 14(9): 3728-3756, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507806

RESUMO

Naked mole-rats (NMR) are subterranean rodents characterized by an unusual longevity coupled with an unexplained resistance to aging. In the present study, we performed extensive in situ analysis and single-cell RNA-sequencing comparing young and older animals. At variance with other species, NMR exhibited a striking stability of skin compartments and cell types, which remained stable over time without aging-associated changes. Remarkably, the number of stem cells was constant throughout aging. We found three classical cellular states defining a unique keratinocyte differentiation trajectory that were not altered after pseudo-temporal reconstruction. Epidermal gene expression did not change with aging either. Langerhans cell clusters were conserved, and only a higher basal stem cell expression of Igfbp3 was found in aged animals. In accordance, NMR skin healing closure was similar in young and older animals. Altogether, these results indicate that NMR skin is characterized by peculiar genetic and cellular features, different from those previously demonstrated for mice and humans. The remarkable stability of the aging NMR skin transcriptome likely reflects unaltered homeostasis and resilience.


Assuntos
Ratos-Toupeira , Transcriptoma , Envelhecimento/genética , Animais , Longevidade/genética , Camundongos , Ratos-Toupeira/genética , Células-Tronco
3.
Science ; 371(6529)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542111

RESUMO

During development, cells progress from a pluripotent state to a more restricted fate within a particular germ layer. However, cranial neural crest cells (CNCCs), a transient cell population that generates most of the craniofacial skeleton, have much broader differentiation potential than their ectodermal lineage of origin. Here, we identify a neuroepithelial precursor population characterized by expression of canonical pluripotency transcription factors that gives rise to CNCCs and is essential for craniofacial development. Pluripotency factor Oct4 is transiently reactivated in CNCCs and is required for the subsequent formation of ectomesenchyme. Furthermore, open chromatin landscapes of Oct4+ CNCC precursors resemble those of epiblast stem cells, with additional features suggestive of priming for mesenchymal programs. We propose that CNCCs expand their developmental potential through a transient reacquisition of molecular signatures of pluripotency.


Assuntos
Crista Neural/embriologia , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular/genética , Movimento Celular , Embrião de Mamíferos , Camadas Germinativas/citologia , Camundongos , Crista Neural/citologia , Crista Neural/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , RNA-Seq , Transcrição Gênica , Transcriptoma
4.
JBMR Plus ; 4(8): e10383, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33134768

RESUMO

Skeletal development is a tightly orchestrated process in which cartilage and bone differentiation are intricately intertwined. Recent studies have highlighted the contribution of epigenetic modifications and their writers to skeletal development. Methylated cytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the Ten-eleven-translocation (TET) enzymes leading to demethylation. We have previously demonstrated that 5hmC is stably accumulated on lineage-specific genes that are activated during in vitro chondrogenesis in the ATDC5 chondroprogenitors. Knockdown (KD) of Tet1 via short-hairpin RNAs blocked ATDC5 chondrogenic differentiation. Here, we aimed to provide the mechanistic basis for TET1 function during ATDC5 differentiation. Transcriptomic analysis of Tet1 KD cells demonstrated that 54% of downregulated genes were SOX9 targets, suggesting a role for TET1 in mediating activation of a subset of the SOX9 target genes. Using genome-wide mapping of 5hmC during ATDC5 differentiation, we found that 5hmC is preferentially accumulated at chondrocyte-specific class II binding sites for SOX9, as compared with the tissue-agnostic class I sites. Specifically, we find that SOX9 is unable to bind to Col2a1 and Acan after Tet1 KD, despite no changes in SOX9 levels. Finally, we compared this KD scenario with the genetic loss of TET1 in the growth plate using Tet1 -/- embryos, which are approximately 10% smaller than their WT counterparts. In E17.5 Tet1 -/- embryos, loss of SOX9 target gene expression is more modest than upon Tet1 KD in vitro. Overall, our data suggest a role for TET1-mediated 5hmC deposition in partly shaping an epigenome conducive for SOX9 function. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

5.
Nature ; 554(7690): 112-117, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364875

RESUMO

Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and dosage-dependent effects on craniofacial development. Taken together, our findings illustrate how disruption in general regulators that compromise nucleolar homeostasis can result in tissue-selective malformations.


Assuntos
Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Dano ao DNA , DNA Ribossômico/metabolismo , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/patologia , Estresse Fisiológico , Animais , Apoptose , Benzotiazóis/farmacologia , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Cromatina/metabolismo , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Ribossômico/genética , RNA Polimerases Dirigidas por DNA/deficiência , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Disostose Mandibulofacial/embriologia , Camundongos , Naftiridinas/farmacologia , Crista Neural/enzimologia , Crista Neural/patologia , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Fenótipo , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Helicases/metabolismo , RNA Polimerase I/antagonistas & inibidores , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Crânio/patologia , Estresse Fisiológico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Xenopus , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência
7.
Dev Cell ; 33(1): 56-66, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25800090

RESUMO

Exposure to environmental teratogenic pollutant leads to severe birth defects. However, the biological events underlying these developmental abnormalities remain undefined. Here, we report a molecular link between an environmental stress response pathway and key developmental genes during craniofacial development. Strikingly, mutant mice with impaired Pax3/7 function display severe craniofacial defects. We show that these are associated with an upregulation of the signaling pathway mediated by the Aryl hydrocarbon receptor (AHR), the receptor to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), revealing a genetic interaction between Pax3 and AHR signaling. Activation of AHR signaling in Pax3-deficient embryos drives facial mesenchymal cells out of the cell cycle through the upregulation of p21 expression. Accordingly, inhibiting AHR activity rescues the cycling status of these cells and the facial closure of Pax3/7 mutants. Together, our findings demonstrate that the regulation of AHR signaling by Pax3/7 is required to protect against TCDD/AHR-mediated teratogenesis during craniofacial development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Anormalidades Congênitas/prevenção & controle , Anormalidades Craniofaciais/prevenção & controle , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Poluentes Ambientais/toxicidade , Fator de Transcrição PAX7/fisiologia , Fatores de Transcrição Box Pareados/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Anormalidades Congênitas/etiologia , Anormalidades Craniofaciais/induzido quimicamente , Inibidor de Quinase Dependente de Ciclina p21/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Transcrição PAX3 , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzodioxinas Policloradas/toxicidade , Gravidez , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Hidrocarboneto Arílico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Development ; 141(14): 2780-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005473

RESUMO

A central question in development is to define how the equilibrium between cell proliferation and differentiation is temporally and spatially regulated during tissue formation. Here, we address how interactions between cyclin-dependent kinase inhibitors essential for myogenic growth arrest (p21(cip1) and p57(kip2)), the Notch pathway and myogenic regulatory factors (MRFs) orchestrate the proliferation, specification and differentiation of muscle progenitor cells. We first show that cell cycle exit and myogenic differentiation can be uncoupled. In addition, we establish that skeletal muscle progenitor cells require Notch signaling to maintain their cycling status. Using several mouse models combined with ex vivo studies, we demonstrate that Notch signaling is required to repress p21(cip1) and p57(kip2) expression in muscle progenitor cells. Finally, we identify a muscle-specific regulatory element of p57(kip2) directly activated by MRFs in myoblasts but repressed by the Notch targets Hes1/Hey1 in progenitor cells. We propose a molecular mechanism whereby information provided by Hes/Hey downstream of Notch as well as MRF activities are integrated at the level of the p57(kip2) enhancer to regulate the decision between progenitor cell maintenance and muscle differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5/metabolismo , Receptores Notch/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Elementos Facilitadores Genéticos/genética , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Camundongos Transgênicos , Desenvolvimento Muscular , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Mioblastos/citologia , Mioblastos/metabolismo , Especificidade de Órgãos , Fator de Transcrição PAX7/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição HES-1
9.
PLoS One ; 8(5): e63143, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23650549

RESUMO

The paired-box homeodomain transcription factor Pax3 is a key regulator of the nervous system, neural crest and skeletal muscle development. Despite the important role of this transcription factor, very few direct target genes have been characterized. We show that Itm2a, which encodes a type 2 transmembrane protein, is a direct Pax3 target in vivo, by combining genetic approaches and in vivo chromatin immunoprecipitation assays. We have generated a conditional mutant allele for Itm2a, which is an imprinted gene, by flanking exons 2-4 with loxP sites and inserting an IRESnLacZ reporter in the 3' UTR of the gene. The LacZ reporter reproduces the expression profile of Itm2a, and allowed us to further characterize its expression at sites of myogenesis, in the dermomyotome and myotome of somites, and in limb buds, in the mouse embryo. We further show that Itm2a is not only expressed in adult muscle fibres but also in the satellite cells responsible for regeneration. Itm2a mutant mice are viable and fertile with no overt phenotype during skeletal muscle formation or regeneration. Potential compensatory mechanisms are discussed.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Músculo Esquelético/embriologia , Fatores de Transcrição Box Pareados/metabolismo , Animais , Núcleo Celular/metabolismo , Feminino , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Desenvolvimento Muscular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Fator Regulador Miogênico 5/metabolismo , Fator de Transcrição PAX3 , Células Satélites de Músculo Esquelético/metabolismo
10.
EMBO J ; 30(6): 1162-72, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21304489

RESUMO

Plants and many other eukaryotes can make use of two major pathways to cope with mutagenic effects of light, photoreactivation and nucleotide excision repair (NER). While photoreactivation allows direct repair by photolyase enzymes using light energy, NER requires a stepwise mechanism with several protein complexes acting at the levels of lesion detection, DNA incision and resynthesis. Here we investigated the involvement in NER of DE-ETIOLATED 1 (DET1), an evolutionarily conserved factor that associates with components of the ubiquitylation machinery in plants and mammals and acts as a negative repressor of light-driven photomorphogenic development in Arabidopsis. Evidence is provided that plant DET1 acts with CULLIN4-based ubiquitin E3 ligase, and that appropriate dosage of DET1 protein is necessary for efficient removal of UV photoproducts through the NER pathway. Moreover, DET1 is required for CULLIN4-dependent targeted degradation of the UV-lesion recognition factor DDB2. Finally, DET1 protein is degraded concomitantly with DDB2 upon UV irradiation in a CUL4-dependent mechanism. Altogether, these data suggest that DET1 and DDB2 cooperate during the excision repair process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas Culina/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Genoma de Planta/efeitos da radiação , Proteínas Nucleares/metabolismo , Estresse Fisiológico , Arabidopsis/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...