Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 1): 118782, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570123

RESUMO

Outdoor air pollution in urban areas, especially particulate matter (PM), is harmful to human health. Urban trees and shrubs provide crucial ecosystem services such as air pollution mitigation by acting as natural filters. However, urban greenery comprises a particular biodiversity, and different plant species vary in their capacity to accumulate PM. Twenty-two plant species were analyzed and selected according to their leaf traits, the different fractions of PM accumulated on the leaves (large - PML, coarse - PMC, and fine - PMF) and their chemical composition. The study was conducted in four city zones: urban traffic (UT), urban background (UB), industrial (IND), and rural (RUR), comparing winter (W) and summer (S) seasons. The average PM levels in the air and accumulated on the leaves were higher in W than in S season. During both seasons, the highest PM accumulated on the leaves was recorded at the UT zone. Nine species were selected as the most suitable for accumulating PML, seven as the most efficient for accumulating PMC, and six for accumulating PMF. The leaf area and leaf roundness were correlated negatively with PM accumulation. The evergreen species L. nobilis was indicated as suitable for dealing with air pollution based on PM10 and PM2.5 values recorded in the air. Regarding the PM element and metal composition, L. nobilis, Photinia x fraseri, Olea europaea, Quercus ilex and Nerium oleander were selected as species with notable elements and metal accumulation. In summary, the study identified species with higher PM accumulation capacity and assessed the seasonal PM accumulation patterns in different city zones, providing insights into the species interactions with PM and their potential for monitoring and coping with air pollution.

2.
Heliyon ; 10(1): e23594, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205296

RESUMO

Soil functionality is critical to the biosphere as it provides ecosystem services relevant for a healthy planet. The soil microbial composition is significantly impacted by anthropogenic activities, including urbanization. In this context, the study of soil microorganisms associated to urban green spaces has started to be crucial toward sustainable city development. Microbes living in the soil produce and degrade volatile organic compounds (VOCs). The VOC profiles may be used to distinguish between soils with various characteristics and management practices, reflecting variations in the activity of soil microbes that use a variety of metabolic pathways. Here, a combined approach based on DNA metabarcoding and GC-MS analysis was used to evaluate the soil quality from urban flowerbeds in Prato (Tuscany, Italy) in terms of microbial biodiversity and VOC emission profiles, with the final aim of evaluating the possible correlation between composition of microbial community and VOC patterns. Results showed that VOCs in the considered soil originated from anthropic and biological activity, and significant correlations between specific microbial taxa and VOCs were detected. Overall, the study demonstrated the feasibility of the use of microbe-VOC correlation as a proxy for soil quality assessment in urban soils.

3.
Sci Total Environ ; 830: 154662, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35318060

RESUMO

The measures taken to contain the spread of COVID-19 in 2020 included restrictions of people's mobility and reductions in economic activities. These drastic changes in daily life, enforced through national lockdowns, led to abrupt reductions of anthropogenic CO2 emissions in urbanized areas all over the world. To examine the effect of social restrictions on local emissions of CO2, we analysed district level CO2 fluxes measured by the eddy-covariance technique from 13 stations in 11 European cities. The data span several years before the pandemic until October 2020 (six months after the pandemic began in Europe). All sites showed a reduction in CO2 emissions during the national lockdowns. The magnitude of these reductions varies in time and space, from city to city as well as between different areas of the same city. We found that, during the first lockdowns, urban CO2 emissions were cut with respect to the same period in previous years by 5% to 87% across the analysed districts, mainly as a result of limitations on mobility. However, as the restrictions were lifted in the following months, emissions quickly rebounded to their pre-COVID levels in the majority of sites.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , COVID-19/epidemiologia , Dióxido de Carbono/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Material Particulado/análise , SARS-CoV-2
4.
Sci Total Environ ; 795: 148877, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252774

RESUMO

The outbreak of COVID-19 pandemic was accompanied by global mobility restrictions and slowdown in manufacturing activities. Accordingly, cities experienced a significant decrease of CO2 emissions. In this study, continuous measurements of CO2 fluxes, atmospheric CO2 concentrations and δ13C-CO2 values were performed in the historical center of Florence (Italy) before, during and after the almost two-month long national lockdown. The temporal trends of the analyzed parameters, combined with the variations in emitting source categories (from inventory data), evidenced a fast response of flux measurements to variations in the strength of the emitting sources. Similarly, the δ13C-CO2 values recorded the change in the prevailing sources contributing to urban atmospheric CO2, confirming the effectiveness of carbon isotopic data as geochemical tracers for identifying and quantifying the relative contributions of emitting sources. Although the direct impact of restriction measurements on CO2 concentrations was less clear due to seasonal trends and background fluctuations, an in-depth analysis of the daily local CO2 enhancement with respect to the background values revealed a progressive decrease throughout the lockdown phase at the end of the heating season (>10 ppm), followed by a net increase (ca. 5 ppm) with the resumption of traffic. Finally, the investigation of the shape of the frequency distribution of the analyzed variables revealed interesting aspects concerning the dynamics of the systems.


Assuntos
Poluentes Atmosféricos , COVID-19 , Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , SARS-CoV-2
5.
Environ Sci Pollut Res Int ; 28(23): 29908-29918, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33575944

RESUMO

A multi-year dataset of measurements of CO2 concentrations, eddy covariance fluxes, and meteorological parameters over the city centre of Florence (Italy) has been analysed to assess the role of anthropogenic emissions and meteorology in controlling urban CO2 concentrations. The latter exhibited a negative correlation with air temperature, wind speed, solar radiation, and sensible heat flux and a positive one with relative humidity and emissions. A linear and an artificial neural network (ANN) model have been developed and validated for short-term modelling of 3-h CO2 concentrations. The ANN model performed better, with mean bias of 0.58 ppm, root mean square error within 30 ppm, and r2=0.49. Data clustering through the self-organized maps allowed to disentangle the role played by emissions and meteorological parameters in influencing CO2 concentrations. Sensitivity analysis of CO2 concentrations revealed a primary role played by the meteorological parameters, particularly wind speed. These results highlighted that (i) emission reduction actions at local urban scale should be better tied to actual and expected meteorological conditions and (ii) those actions alone have limited effects (e.g. a 20% emission reduction would result in a 3% CO2 concentrations reduction). For all these reasons, large-scale policies would be needed.


Assuntos
Poluentes Atmosféricos , Condução de Veículo , Dióxido de Carbono , Monitoramento Ambiental , Itália , Meteorologia , Vento
6.
Environ Pollut ; 267: 115682, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254679

RESUMO

Covid19-induced lockdown measures caused modifications in atmospheric pollutant and greenhouse gas emissions. Urban road traffic was the most impacted, with 48-60% average reduction in Italy. This offered an unprecedented opportunity to assess how a prolonged (∼2 months) and remarkable abatement of traffic emissions impacted on urban air quality. Six out of the eight most populated cities in Italy with different climatic conditions were analysed: Milan, Bologna, Florence, Rome, Naples, and Palermo. The selected scenario (24/02/2020-30/04/2020) was compared to a meteorologically comparable scenario in 2019 (25/02/2019-02/05/2019). NO2, O3, PM2.5 and PM10 observations from 58 air quality and meteorological stations were used, while traffic mobility was derived from municipality-scale big data. NO2 levels remarkably dropped over all urban areas (from -24.9% in Milan to -59.1% in Naples), to an extent roughly proportional but lower than traffic reduction. Conversely, O3 concentrations remained unchanged or even increased (up to 13.7% in Palermo and 14.7% in Rome), likely because of the reduced O3 titration triggered by lower NO emissions from vehicles, and lower NOx emissions over typical VOCs-limited environments such as urban areas, not compensated by comparable VOCs emissions reductions. PM10 exhibited reductions up to 31.5% (Palermo) and increases up to 7.3% (Naples), while PM2.5 showed reductions of ∼13-17% counterbalanced by increases up to ∼9%. Higher household heating usage (+16-19% in March), also driven by colder weather conditions than 2019 (-0.2 to -0.8 °C) may partly explain primary PM emissions increase, while an increase in agriculture activities may account for the NH3 emissions increase leading to secondary aerosol formation. This study confirmed the complex nature of atmospheric pollution even when a major emission source is clearly isolated and controlled, and the need for consistent decarbonisation efforts across all emission sectors to really improve air quality and public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Cidades , Monitoramento Ambiental , Humanos , Itália , Pandemias , Material Particulado , Cidade de Roma , Emissões de Veículos
7.
Sensors (Basel) ; 20(11)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498361

RESUMO

This study aims to test the performances of a low-cost and automatic phenotyping platform, consisting of a Red-Green-Blue (RGB) commercial camera scanning objects on rotating plates and the reconstruction of main plant phenotypic traits via the structure for motion approach (SfM). The precision of this platform was tested in relation to three-dimensional (3D) models generated from images of potted maize, tomato and olive tree, acquired at a different frequency (steps of 4°, 8° and 12°) and quality (4.88, 6.52 and 9.77 µm/pixel). Plant and organs heights, angles and areas were extracted from the 3D models generated for each combination of these factors. Coefficient of determination (R2), relative Root Mean Square Error (rRMSE) and Akaike Information Criterion (AIC) were used as goodness-of-fit indexes to compare the simulated to the observed data. The results indicated that while the best performances in reproducing plant traits were obtained using 90 images at 4.88 µm/pixel (R2 = 0.81, rRMSE = 9.49% and AIC = 35.78), this corresponded to an unviable processing time (from 2.46 h to 28.25 h for herbaceous plants and olive trees, respectively). Conversely, 30 images at 4.88 µm/pixel resulted in a good compromise between a reliable reconstruction of considered traits (R2 = 0.72, rRMSE = 11.92% and AIC = 42.59) and processing time (from 0.50 h to 2.05 h for herbaceous plants and olive trees, respectively). In any case, the results pointed out that this input combination may vary based on the trait under analysis, which can be more or less demanding in terms of input images and time according to the complexity of its shape (R2 = 0.83, rRSME = 10.15% and AIC = 38.78). These findings highlight the reliability of the developed low-cost platform for plant phenotyping, further indicating the best combination of factors to speed up the acquisition and elaboration process, at the same time minimizing the bias between observed and simulated data.


Assuntos
Imageamento Tridimensional , Fenótipo , Folhas de Planta , Solanum lycopersicum , Olea , Reprodutibilidade dos Testes , Zea mays
8.
Sensors (Basel) ; 20(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235527

RESUMO

The Arctic is an important natural laboratory that is extremely sensitive to climatic changes and its monitoring is, therefore, of great importance. Due to the environmental extremes it is often hard to deploy sensors and observations are limited to a few sparse observation points limiting the spatial and temporal coverage of the Arctic measurement. Given these constraints the possibility of deploying a rugged network of low-cost sensors remains an interesting and convenient option. The present work validates for the first time a low-cost sensor array (AIRQino) for monitoring basic meteorological parameters and atmospheric composition in the Arctic (air temperature, relative humidity, particulate matter, and CO2). AIRQino was deployed for one year in the Svalbard archipelago and its outputs compared with reference sensors. Results show good agreement with the reference meteorological parameters (air temperature (T) and relative humidity (RH)) with correlation coefficients above 0.8 and small absolute errors (≈1 °C for temperature and ≈6% for RH). Particulate matter (PM) low-cost sensors show a good linearity (r2 ≈ 0.8) and small absolute errors for both PM2.5 and PM10 (≈1 µg m-3 for PM2.5 and ≈3 µg m-3 for PM10), while overall accuracy is impacted both by the unknown composition of the local aerosol, and by high humidity conditions likely generating hygroscopic effects. CO2 exhibits a satisfying agreement with r2 around 0.70 and an absolute error of ≈23 mg m-3. Overall these results, coupled with an excellent data coverage and scarce need of maintenance make the AIRQino or similar devices integrations an interesting tool for future extended sensor networks also in the Arctic environment.

9.
Sensors (Basel) ; 18(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154366

RESUMO

A low-cost air quality station has been developed for real-time monitoring of main atmospheric pollutants. Sensors for CO, CO2, NO2, O3, VOC, PM2.5 and PM10 were integrated on an Arduino Shield compatible board. As concerns PM2.5 and PM10 sensors, the station underwent a laboratory calibration and later a field validation. Laboratory calibration has been carried out at the headquarters of CNR-IBIMET in Florence (Italy) against a TSI DustTrak reference instrument. A MATLAB procedure, implementing advanced mathematical techniques to detect possible complex non-linear relationships between sensor signals and reference data, has been developed and implemented to accomplish the laboratory calibration. Field validation has been performed across a full "heating season" (1 November 2016 to 15 April 2017) by co-locating the station at a road site in Florence where an official fixed air quality station was in operation. Both calibration and validation processes returned fine scores, in most cases better than those achieved for similar systems in the literature. During field validation, in particular, for PM2.5 and PM10 mean biases of 0.036 and 0.598 µg/m³, RMSE of 4.056 and 6.084 µg/m³, and R² of 0.909 and 0.957 were achieved, respectively. Robustness of the developed station, seamless deployed through a five and a half month outdoor campaign without registering sensor failures or drifts, is a further key point.

10.
Sci Total Environ ; 640-641: 377-386, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29864655

RESUMO

The composition in Volatile Organic Compounds (VOC) of the biogas produced by seven landfills of Giugliano (Naples, Campania, Italy) was determined and VOC emission rates assessed to verify if these compounds represent a potential threat to the population living nearby. VOC composition in the biogas could not be predicted, as heterogeneous waste was dumped from the late 1980s to the early 2000s and then underwent biological degradation. No data are available on the amount and composition of VOC in the biogas before the landfills closure as no operational biogas collection system was present. In this study, VOC composition was determined by gas chromatography-mass spectrometry (GC-MS), after collecting samples from collection pipes and from soil fractures in cover soil or capping. Individual VOC were quantified and data compared with those collected at two landfills in Latium, when they were still in operation. Relevant differences were observed, mainly due to waste aging, but no specific VOC revealing toxic waste dumping was found, although the concurrent presence of certain compounds suggested that dumping of industrial wastes might have occurred. The average VOC emission was assessed and a dispersion model was run to find out if the emitted plume could affect the health of population. The results suggested that fugitive emissions did not represent a serious danger, since the concentrations simulated at the neighboring cities were below the threshold limits for acute and chronic diseases. However, VOC plume could cause annoyance at night when the steady state conditions of the atmosphere enhance pollutants accumulation in the lower layers. In addition, some of the emitted VOC, such as alkylbenzenes and monoterpenes, can contribute to tropospheric ozone formation.


Assuntos
Poluentes Atmosféricos/análise , Eliminação de Resíduos/métodos , Compostos Orgânicos Voláteis/análise , Biocombustíveis , Monitoramento Ambiental , Itália , Eliminação de Resíduos/estatística & dados numéricos , Instalações de Eliminação de Resíduos
11.
Environ Sci Pollut Res Int ; 22(23): 19027-38, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26233744

RESUMO

The importance of road traffic, residential heating and meteorological conditions as major drivers of urban PM10 concentrations during air pollution critical episodes has been assessed in the city of Florence (Italy) during the winter season. The most significant meteorological variables (wind speed and atmospheric stability) explained 80.5-85.5% of PM10 concentrations variance, while a marginal role was played by major emission sources such as residential heating (12.1%) and road traffic (5.7%). The persistence of low wind speeds and unstable atmospheric conditions was the leading factor controlling PM10 during critical episodes. A specific PM10 critical episode was analysed, following a snowstorm that caused a "natural" scenario of 2-day dramatic road traffic abatement (-43%), and a massive (up to +48%) and persistent (8 consecutive days) increase in residential heating use. Even with such a strong variability in local PM10 emissions, the role of meteorological conditions was prominent, revealing that short-term traffic restrictions are insufficient countermeasures to reduce the health impacts and risks of PM10 critical episodes, while efforts should be made to anticipate those measures by linking them with air quality and weather forecasts.


Assuntos
Poluição do Ar/análise , Cidades/estatística & dados numéricos , Calefação/efeitos adversos , Material Particulado/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Habitação , Humanos , Itália , Estações do Ano , Tempo (Meteorologia) , Vento
12.
Sensors (Basel) ; 15(1): 1088-105, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25580905

RESUMO

Proximal sensing is fundamental to monitor the spatial and seasonal dynamics of ecosystems and can be considered as a crucial validation tool to upscale in situ observations to the satellite level. Linking hyperspectral remote sensing with carbon fluxes and biophysical parameters is critical to allow the exploitation of spatial and temporal extensive information for validating model simulations at different scales. In this study, we present the WhiteRef, a new hyperspectral system designed as a direct result of the needs identified during the EUROSPEC ES0903 Cost Action, and developed by Fondazione Edmund Mach and the Institute of Biometeorology, CNR, Italy. The system is based on the ASD FieldSpec Pro spectroradiometer and was designed to acquire continuous radiometric measurements at the Eddy Covariance (EC) towers and to fill a gap in the scientific community: in fact, no system for continuous spectral measurements in the Short Wave Infrared was tested before at the EC sites. The paper illustrates the functioning of the WhiteRef and describes its main advantages and disadvantages. The WhiteRef system, being based on a robust and high quality commercially available instrument, has a clear potential for unattended continuous measurements aiming at the validation of satellites' vegetation products.


Assuntos
Luz , Tecnologia de Sensoriamento Remoto/métodos , Clorofila/análise , Eletricidade , Estações do Ano , Interface Usuário-Computador
13.
Environ Sci Technol ; 43(14): 5218-22, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19708344

RESUMO

Measurements of CO2 and acetone fluxes have been made over a large-scale, naturally occurring high latitude phytoplankton bloom in the remote South Atlantic. Shipborne micrometeorological methods for direct atmospheric flux measurement have been applied to determine the direction and size of the CO2 and acetone fluxes. Previous results suggest that high latitude oligotrophic ocean regions are sinks of acetone, whereas high productivity regions are sources. The observed CO2 fluxes are into the ocean and on the order of 1 micromol m(-2) s(-1) at most. The acetone fluxes measured show a significant relationship with chlorophyll in the region of the phytoplankton bloom. Although the uncertainty is very high due to the very low signal-to-noise ratio, significant positive acetone mean fluxes of the order of 0.01 nmol m(-2) s(-1) have been observed in bloom areas, whereas near zero, negative, or highly variable low acetone fluxes have been measured elsewhere. Based on these results we estimate that the global acetone source from bloom affected areas is small in comparison to the uptake from the much larger oligotrophic regions, and that the ocean is globally a net sink for acetone.


Assuntos
Acetona/análise , Atmosfera/química , Dióxido de Carbono/análise , Água do Mar/química , Oceano Atlântico , Monitoramento Ambiental/métodos , Navios , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...