Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(4): 435-456, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37080931

RESUMO

According to modern view, susceptibility to diseases, specifically to cognitive and neuropsychiatric disorders, can form during embryonic development. Adverse factors affecting mother during the pregnancy increase the risk of developing pathologies. Despite the association between elevated maternal blood homocysteine (Hcy) and fetal brain impairments, as well as cognitive deficits in the offspring, the role of brain plasticity in the development of these pathologies remains poorly studied. Here, we review the data on the negative impact of hyperhomocysteinemia (HHcy) on the neural plasticity, in particular, its possible influence on the offspring brain plasticity through epigenetic mechanisms, such as changes in intracellular methylation potential, activity of DNA methyltransferases, DNA methylation, histone modifications, and microRNA expression in brain cells. Since placenta plays a key role in the transport of nutrients and transmission of signals from mother to fetus, its dysfunction due to aberrant epigenetic regulation can affect the development of fetal CNS. The review also presents the data on the impact of maternal HHcy on the epigenetic regulation in the placenta. The data presented in the review are not only interesting from purely scientific point of view, but can help in understanding the role of HHcy and epigenetic mechanisms in the pathogenesis of diseases, such as pregnancy pathologies resulting in the delayed development of fetal brain, cognitive impairments in the offspring during childhood, and neuropsychiatric and neurodegenerative disorders later in life, as well as in the search for approaches for their prevention using neuroprotectors.


Assuntos
Epigênese Genética , Hiper-Homocisteinemia , Gravidez , Feminino , Humanos , Hiper-Homocisteinemia/metabolismo , Placenta/metabolismo , Metilação de DNA , Sistema Nervoso/metabolismo
2.
Biochemistry (Mosc) ; 88(2): 262-279, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37072327

RESUMO

Numerous studies have shown that various adverse factors of different nature and action mechanisms have similar negative influence on placental angiogenesis, resulting in insufficiency of placental blood supply. One of the risk factors for pregnancy complications with placental etiology is an increased level of homocysteine in the blood of pregnant women. However, the effect of hyperhomocysteinemia (HHcy) on the development of the placenta and, in particular, on the formation of its vascular network is at present poorly understood. The aim of this work was to study the effect of maternal HHcy on the expression of angiogenic and growth factors (VEGF-A, MMP-2, VEGF-B, BDNF, NGF), as well as their receptors (VEGFR-2, TrkB, p75NTR), in the rat placenta. The effects of HHcy were studied in the morphologically and functionally different maternal and fetal parts of the placenta on the 14th and 20th day of pregnancy. The maternal HHcy caused increase in the levels of oxidative stress and apoptosis markers accompanied by an imbalance of the studied angiogenic and growth factors in the maternal and/or fetal part of the placenta. The influence of maternal HHcy in most cases manifested in a decrease in the protein content (VEGF-A), enzymatic activity (MMP-2), gene expression (VEGFB, NGF, TRKB), and accumulation of precursor form (proBDNF) of the investigated factors. In some cases, the effects of HHcy differed depending on the placental part and stage of development. The influence of maternal HHcy on signaling pathways and processes controlled by the studied angiogenic and growth factors could lead to incomplete development of the placental vasculature and decrease in the placental transport, resulting in fetal growth restriction and impaired fetal brain development.


Assuntos
Hiper-Homocisteinemia , Placenta , Gravidez , Feminino , Ratos , Humanos , Animais , Placenta/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hiper-Homocisteinemia/metabolismo , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia
3.
Cells ; 12(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611982

RESUMO

Maternal hyperhomocysteinemia causes the disruption of placental blood flow and can lead to serious disturbances in the formation of the offspring's brain. In the present study, the effects of prenatal hyperhomocysteinemia (PHHC) on the neuronal migration, neural tissue maturation, and the expression of signaling molecules in the rat fetal brain were described. Maternal hyperhomocysteinemia was induced in female rats by per os administration of 0.15% aqueous methionine solution in the period of days 4-21 of pregnancy. Behavioral tests revealed a delay in PHHC male pups maturing. Ultrastructure of both cortical and hippocampus tissue demonstrated the features of the developmental delay. PHHC was shown to disturb both generation and radial migration of neuroblasts into the cortical plate. Elevated Bdnf expression, together with changes in proBDNF/mBDNF balance, might affect neuronal cell viability, positioning, and maturation in PHHC pups. Reduced Kdr gene expression and the content of SEMA3E might lead to impaired brain development. In the brain tissue of E20 PHHC fetuses, the content of the procaspase-8 was decreased, and the activity level of the caspase-3 was increased; this may indicate the development of apoptosis. PHHC disturbs the mechanisms of early brain development leading to a delay in brain tissue maturation and formation of the motor reaction of pups.


Assuntos
Hiper-Homocisteinemia , Ratos , Animais , Feminino , Gravidez , Masculino , Ratos Wistar , Hiper-Homocisteinemia/metabolismo , Placenta/metabolismo , Encéfalo/metabolismo , Neurogênese
4.
Cells ; 10(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207057

RESUMO

Maternal hyperhomocysteinemia is one of the common complications of pregnancy that causes offspring cognitive deficits during postnatal development. In this study, we investigated the effect of prenatal hyperhomocysteinemia (PHHC) on inflammatory, glial activation, and neuronal cell death markers in the hippocampus of infant rats. Female Wistar rats received L-methionine (0.6 g/kg b.w.) by oral administration during pregnancy. On postnatal days 5 and 20, the offspring's hippocampus was removed to perform histological and biochemical studies. After PHHC, the offspring exhibited increased brain interleukin-1ß and interleukin-6 levels and glial activation, as well as reduced anti-inflammatory interleukin-10 level in the hippocampus. Additionally, the activity of acetylcholinesterase was increased in the hippocampus of the pups. Exposure to PHHC also resulted in the reduced number of neurons and disrupted neuronal ultrastructure. At the same time, no changes in the content and activity of caspase-3 were found in the hippocampus of the pups. In conclusion, our findings support the hypothesis that neuroinflammation and glial activation could be involved in altering the hippocampus cellular composition following PHHC, and these alterations could be associated with cognitive disorders later in life.


Assuntos
Biomarcadores/metabolismo , Hipocampo/metabolismo , Hiper-Homocisteinemia/metabolismo , Inflamação/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Acetilcolinesterase/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/patologia , Caspase 3/metabolismo , Citocinas/metabolismo , Feminino , Hipocampo/patologia , Hiper-Homocisteinemia/patologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Metionina/metabolismo , Neuroglia/patologia , Neurônios/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar
5.
Biochemistry (Mosc) ; 86(6): 716-728, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34225594

RESUMO

The article presents current views on maternal hyperhomocysteinemia (HHcy) as an important factor causing prenatal stress and impaired nervous system development in fetuses and newborns in early ontogenesis, as well as complications in adulthood. Experimental data demonstrate that prenatal HHcy (PHHcy) affects the morphological maturation of the brain and activity of its neurotransmitter systems. Cognitive deficit observed in the offspring subjected to PHHcy in experimental studies can presumably cause the predisposition to various neurodegenerative diseases, as the role of maternal HHcy in the pathogenesis such diseases has been proven in clinical studies. The review also discusses molecular mechanisms of the HHcy neurotoxic action on the nervous system development in the prenatal and early postnatal periods, which include oxidative stress, apoptosis activation, changes in the DNA methylation patterns and microRNA levels, altered expression and processing of neurotrophins, and neuroinflammation induced by an increased production of pro-inflammatory cytokines. Special attention is given to the maternal HHcy impact on the placenta function and its possible contribution to the brain function impairments in the offspring. Published data suggest that some effects of PHHcy on the developing fetal brain can be due to the disturbances in the transport functions of the placenta resulting in an insufficient supply of nutrients necessary for the proper formation and functioning of brain structures.


Assuntos
Encéfalo/fisiopatologia , Disfunção Cognitiva/etiologia , Doenças Fetais/etiologia , Hiper-Homocisteinemia/complicações , Placenta/fisiopatologia , Animais , Feminino , Humanos , Gravidez , Complicações na Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...