Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559856

RESUMO

Carbon derived from biomass waste usage is rising in various fields of application due to its availability, cost-effectiveness, and sustainability, but it remains limited in tissue engineering applications. Carbon derived from human hair waste was selected to fabricate a carbon-based bioscaffold (CHAK) due to its ease of collection and inexpensive synthesis procedure. The CHAK was fabricated via gelation, rapid freezing, and ethanol immersion and characterised based on their morphology, porosity, Fourier transforms infrared (FTIR), tensile strength, swelling ability, degradability, electrical conductivity, and biocompatibility using Wharton's jelly-derived mesenchymal stem cells (WJMSCs). The addition of carbon reduced the porosity of the bioscaffold. Via FTIR analysis, the combination of carbon, agar, and KGM was compatible. Among the CHAK, the 3HC bioscaffold displayed the highest tensile strength (62.35 ± 29.12 kPa). The CHAK also showed excellent swelling and water uptake capability. All bioscaffolds demonstrated a slow degradability rate (<50%) after 28 days of incubation, while the electrical conductivity analysis showed that the 3AHC bioscaffold had the highest conductivity compared to other CHAK bioscaffolds. Our findings also showed that the CHAK bioscaffolds were biocompatible with WJMSCs. These findings showed that the CHAK bioscaffolds have potential as bioscaffolds for tissue engineering applications.

2.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562971

RESUMO

Mechanotransduction is the process by which physical force is converted into a biochemical signal that is used in development and physiology; meanwhile, it is intended for the ability of cells to sense and respond to mechanical forces by activating intracellular signals transduction pathways and the relative phenotypic adaptation. It encompasses the role of mechanical stimuli for developmental, morphological characteristics, and biological processes in different organs; the response of cells to mechanically induced force is now also emerging as a major determinant of disease. Due to fluid shear stress caused by blood flowing tangentially across the lumen surface, cells of the cardiovascular system are typically exposed to a variety of mechanotransduction. In the body, tissues are continuously exposed to physical forces ranging from compression to strain, which is caused by fluid pressure and compressive forces. Only lately, though, has the importance of how forces shape stem cell differentiation into lineage-committed cells and how mechanical forces can cause or exacerbate disease besides organizing cells into tissues been acknowledged. Mesenchymal stem cells (MSCs) are potent mediators of cardiac repair which can secret a large array of soluble factors that have been shown to play a huge role in tissue repair. Differentiation of MSCs is required to regulate mechanical factors such as fluid shear stress, mechanical strain, and the rigidity of the extracellular matrix through various signaling pathways for their use in regenerative medicine. In the present review, we highlighted mechanical influences on the differentiation of MSCs and the general factors involved in MSCs differentiation. The purpose of this study is to demonstrate the progress that has been achieved in understanding how MSCs perceive and react to their mechanical environment, as well as to highlight areas where more research has been performed in previous studies to fill in the gaps.


Assuntos
Sistema Cardiovascular , Células-Tronco Mesenquimais , Diferenciação Celular , Mecanotransdução Celular , Estresse Mecânico
3.
Polymers (Basel) ; 14(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35160466

RESUMO

The advancement of natural-based biomaterials in providing a carrier has revealed a wide range of benefits in the biomedical sciences, particularly in wound healing, tissue engineering and regenerative medicine. Incorporating nanoparticles within polymer composites has been reported to enhance scaffolding performance, cellular interactions and their physico-chemical and biological properties in comparison to analogue composites without nanoparticles. This review summarized the current knowledge of nanoparticles incorporated into natural-based biomaterials with effects on their cellular interactions in wound healing. Although the mechanisms of wound healing and the function of specific cells in wound repair have been partially described, many of the underlying signaling pathways remain unknown. We also reviewed the current understanding and new insights into the wingless/integrated (Wnt)/ß-catenin pathway and other signaling pathways of transforming growth factor beta (TGF-ß), Notch, and Sonic hedgehog during wound healing. The findings demonstrated that most of the studies reported positive outcomes of biomaterial scaffolds incorporated with nanoparticles on cell attachment, viability, proliferation, and migration. Combining therapies consisting of nanoparticles and biomaterials could be promising for future therapies and better outcomes in tissue engineering and regenerative medicine.

4.
Micromachines (Basel) ; 13(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35056195

RESUMO

Acoustics have a wide range of uses, from noise-cancelling to ultrasonic imaging. There has been a surge in interest in developing acoustic-based approaches for biological and biomedical applications in the last decade. This review focused on the application of surface acoustic waves (SAW) based on interdigital transducers (IDT) for live-cell investigations, such as cell manipulation, cell separation, cell seeding, cell migration, cell characteristics, and cell behaviours. The approach is also known as acoustofluidic, because the SAW device is coupled with a microfluidic system that contains live cells. This article provides an overview of several forms of IDT of SAW devices on recently used cells. Conclusively, a brief viewpoint and overview of the future application of SAW techniques in live-cell investigations were presented.

5.
J Tissue Eng Regen Med ; 8(1): 67-76, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22552847

RESUMO

In the field of cell-based therapy and regenerative medicine, clinical application is the ultimate goal. However, one major concern is: does in vitro manipulation during culture expansion increases tumourigenicity risk on the prepared cells? Therefore, the aim of this study was to investigate the effect of long-term in vitro expansion on human adipose-derived stem cells (ASCs). The ASCs were harvested from lipo-aspirate samples and cultured until passage 20 (P20), using standard culture procedures. ASCs at P5, P10, P15 and P20 were analysed for morphological changes, DNA damage (Comet assay), tumour suppressor gene expression level (quantitative PCR), p53 mutation, telomerase activity, telomere length determination and in vivo tumourigenicity test. Our data showed that ASCs lost their fibroblastic feature in long-term culture. The population doubling time of ASCs increased with long-term culture especially at P15 and P20. There was an increase in DNA damage at later passages (P15 and P20). No significant changes were observed in both p53 and p21 genes expression throughout the long-term culture. There was also no p53 mutation detected and no significant changes were recorded in the relative telomerase activity (RTA) and mean telomere length (TRF) in ASCs at all passages. In vivo implantation of ASCs at P15 and P20 into the nude mice did not result in tumour formation after 4 months. The data showed that ASCs have low risk of tumourigenicity up to P20, with a total population doubling of 42 times. This indicates that adipose tissue should be a safe source of stem cells for cell-based therapy.


Assuntos
Tecido Adiposo/citologia , Carcinogênese , Células-Tronco/citologia , Dano ao DNA , Expressão Gênica , Genes Supressores de Tumor , Humanos , Técnicas In Vitro
6.
Cytotherapy ; 16(5): 599-611, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24290076

RESUMO

BACKGROUND AIMS: The use of retropatellar fat pad-derived mesenchymal stromal cells (RFMSCs) for cell-based therapy, particularly for cartilage repair, has been reported by several investigators in recent years. However, the effects of the donor's age and medical condition on the characteristics of RFMSCs have not been well established. The aim of this study was to determine whether age and medical condition can reduce the multipotential of stem cells isolated from the retropatellar fat pad. METHODS: The RFMSCs were isolated from patients with osteoarthritic knee cartilage (degenerative group; 40-60 years old) and compared with patients without degenerative knee disease (young group; <40 years old) in terms of their growth kinetics, immunophenotype, differentiation ability and stemness gene expression. RESULTS: Data showed that RFMSCs from both groups have similar growth kinetics and immunophenotype profile at passage 3. However, RFMSCs from the degenerative group showed lower adipogenic, osteogenic and chondrogenic differentiation ability compared with RFMSCs derived from the young group. The stemness gene expression level of RFMSCs derived from the degenerative group was lower than that in the young group. RFMSCs from both groups met the minimum criteria of mesenchymal stromal cells and have the potential for cartilage regeneration. However, RFMSCs from the degenerative group showed lower regeneration capability. CONCLUSIONS: These results indicate that older age and osteoarthritic condition did affect the multipotential of stem cells derived from the retropatellar fat pad under the current prescribed condition. More studies will be conducted to clarify whether the age or medical condition contributed more to the loss of differentiation capacity and stemness gene expression of RFMSCs.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular/fisiologia , Osteoartrite/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia , Adulto , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...