Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 207: 108385, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280256

RESUMO

The wide utilization of iron-based nanoparticles (NPs) based on their preferential properties has led to the discharge and accumulation of these materials into the aquatic environment. In this regard, a comparative study of different concentrations of α-Fe2O3 NPs and their micro form was conducted using microalga Chlorella sorokiniana up to the stationary growth phase. This study revealed that high concentrations of NPs (100 and 200 mg L-1) imposed a stressful condition on algal cells documented by a reduction in microalga growth, including cell number and specific growth rate. The physical contact between the algal cells and NPs resulted in a shading effect as well as morphological changes validated by scanning electron microscope results. The biochemical composition of C. sorokiniana exposed to high levels of Fe2O3 NPs was also evaluated. The increase in total carbohydrate content of algal cells along with a significant reduction in unsaturated fatty acids was found. Moreover, Fe2O3 NPs exposure induced oxidative stress evidenced by an increase in lipid peroxidation. To cope with oxidative stress, superoxide dismutase activity and antioxidant potential of microalga as defensive mechanisms increased in the culture with high concentrations of NPs. Besides, due to the interactions, microalga tended to form a protective layer from further cell-NP interactions through the secretion of extracellular polymeric substances. Nonetheless, the nano form of Fe2O3 was more toxic than its micro form due to its small size. Overall, this trial may provide additional insight into the toxicological mechanism and safety assessments of Fe2O3 NPs in the aquatic environment.


Assuntos
Chlorella , Microalgas , Nanopartículas , Chlorella/metabolismo , Nanopartículas/química , Antioxidantes/metabolismo , Estresse Oxidativo
2.
Mar Environ Res ; 179: 105669, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35667325

RESUMO

Due to the increasing production and use of nanomaterials (NMs), their potential toxic impacts on the environment should be considered for a safe application of NMs. In this regard, the potential hazards of MnO2 nanorods (NRs) on the green microalgae Chlorella sorokiniana during long-term exposure were investigated. Exposure to the high concentration of MnO2 NRs (100 and 200 mg L-1) significantly reduced the cell number of C. sorokiniana over 20 days of the experiment. The different concentrations of MnO2 NRs (25-200 mg L-1) induced the remarkable increase in the chlorophyll (a+b) content of algal cells due to the shading effect of NRs. For more than 72 h, the chlorophyll content of microalgae decreased due to the aggregation of NRs and the possible effects of oxidative stress. Long-term exposure to high concentrations of NRs caused a significant decrease in the primary and secondary metabolites of microalgae, including carotenoids, phenolic compounds, proteins, lipids, and carbohydrates. Oxidative stress was one of the possible toxic mechanisms of MnO2 NRs to microalgae validated by an increase in lipid peroxidation induced by exposure to NRs. The algal cells increased the catalase activity and the amount of extracellular polymeric substances in response to NRs toxicity. The low level of Mn ions in the culture media indicated that MnO2 NRs dissolution was not the cause of the observed reduction in the microalgae growth. Moreover, the bulk form of MnO2 was not involved in the toxic impact of MnO2, which was documented by an insignificant decrease in the growth, pigment, and lipid peroxidation of C. sorokiniana. These results may provide an additional insight into the potential hazards of MnO2 NRs on the aquatic ecosystem.


Assuntos
Chlorella , Microalgas , Nanotubos , Biomassa , Chlorella/metabolismo , Clorofila/metabolismo , Ecossistema , Nanotubos/toxicidade
3.
Prep Biochem Biotechnol ; 52(7): 737-747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34871533

RESUMO

BACKGROUND: Horseradish Peroxidase (HRP) is ranked as one of the most important industrial enzymes that is extensively used in industry. Cholesterol is routinely detected indirectly by cholesterol oxidase in the presence of O2, liberating H2O2 as a by-product. The H2O2 content is determined through the HRP activity in the presence of a redox dye, producing a red colored quinoneimine which can be measured quantitatively. Herein, we have designed a magnetic nanoparticle for reusing and easily separating HRP as the most expensive compartment for the low-cost cholesterol assay. METHODS: The gum Arabic coated magnetic nanoparticles were functionalized with L-lysine linker for maintaining protein flexibility on nanoparticle. Enzyme-loaded nanoparticles were characterized by TEM, FTIR, DLS, VSM and XRD analysis. RESULTS: The immobilization efficiency was ∼65% and the immobilized HRP retained 60% of its activity after 8 times reuse. The optimum pH and thermal stability shifted from 7.0 to 8.0 and 60 to 70 °C after immobilization, respectively. Storage stability of HRP was improved by 10%, at 4 °C for 60 days. Immobilized HRP showed more catalytic activity in presence of Fe2+, Ca2+ and Na+. The designed system has cholesterol detection linearity range from 0.2 to 5.0 mM and detection limit of 0.08 mM and acceptable correlation coefficient of 0.9973 and 0.9982 on sample serum using both chromogens. CONCLUSION: The HRP-loaded magnetic nanoparticles are capable of being used as a cost-effective system for cholesterol determination in laboratory due to its reusability and stability benefits.


Assuntos
Lisina , Nanopartículas , Colesterol , Estabilidade Enzimática , Enzimas Imobilizadas/química , Goma Arábica , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Temperatura
4.
World J Plast Surg ; 10(1): 85-95, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33833959

RESUMO

BACKGROUND: White tea (Camellia sinensis) has anti-inflammatory and antioxidant properties and a protective effect against wrinkles, sunburn and UV damages on the skin. Thus, we aimed to evaluate the effect of white tea extract on the healing process of skin wounds in rats. METHODS: This study was done in the Research Center of Shahrekord University of Medical Sciences, Shahrekord, Iran in 2019. Excisional skin wounds were created on five groups of healthy male Wistar rats (200-250 g, n=21) including control group, Eucerin-treated group, white tea 5% ointment (Eucerin) treated group, gel-treated group, white tea 5% gel treated group. Treatment was begun on day 1 and repeated every day at the same time until day 15. Pathologic samples were taken on days 4, 7 and 15 for histopathological examinations. Kruskal-Wallis test was used to analyze data by SPSS. Statistical significance was defined as P<0.05. RESULTS: Wound closure rate of control group was more than other groups on day 4 (P<0.05). On day 7, reepithelisation and granulation tissue of control group were more than white tea 5% ointment-treated and its inflammation was less than others (P<0.05). Neo-vascularization of white tea 5% ointment-treated group was more than control group on days 4 and 15 (P<0.05). On day 4, intact mast cells of control group were more than white tea treated groups (P<0.05). Degranulated mast cells of white tea 5% gel treated group was significantly (P<0.05) more than control group on days 4 and 15. CONCLUSION: Five percent white tea extract could not help the skin wound healing process.

5.
Mol Biol Res Commun ; 5(3): 193-199, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28097172

RESUMO

Phytoene synthase (Psy) and Phytoene desaturase (Pds) are the first two regulatory enzymes in the carotenoids biosynthetic pathway. The genes Psy and Pds are under transcriptional control in many photosynthetic organisms. In the present study, using quantitative real time- PCR (qRT-PCR), the effects of uncoated and gum-Arabic coated PbS nanoparticles (GA-coated PbS NPs) and light intensity on the mRNA levels of Pds were investigated. Relative to mRNA level of Pds at 100 µmol photon m-2 s-1 light intensity (control culture), 2.2-fold increase in transcript levels occurred after 12 h of exposure to higher light intensity, which is significantly (P<0.05) different compared to control. After 48 h of exposure, the mRNA level of Pds was reduced to that in control. This indicates that light intensity regulates Pds at the mRNA level. In the presence of uncoated and GA-coated PbS NPs, the transcript levels of Pds were decreased over time, with uncoated PbS NPs having more inhibitory effects on mRNA levels compared to GA- coated PbS NPs. This shows that PbS NPs have adverse effects on transcription or post transcriptional processing and coating nanoparticles with biopolymers reduces their toxicity to organisms. Being under control, it seems that genetic manipulation of Pds may result in increased biotechnological production of carotenoids by D. salina.

6.
Aquat Toxicol ; 154: 176-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24907922

RESUMO

The potential hazards of nanoparticles (NPs) to the environment and to living organisms need to be considered for a safe development of nanotechnology. In the present study, the potential toxic effects of uncoated and gum Arabic-coated lead sulfide nanoparticles (GA-coated PbS NPs) on the growth, lipid peroxidation, reducing capacity and total carotenoid content of the hypersaline unicellular green algae Dunaliella salina were investigated. Coatings of PbS NPs with GA, as confirmed by Fourier transform infrared spectroscopy, reduced the toxicity of PbS NPs. Uncoated PbS NP toxicity to D. salina was attributed to higher algal cell-NP agglomerate formation, higher lipid peroxidation, lower content of total reducing substances and lower total carotenoid content. Low levels of Pb(2+) in the growth culture media indicate that PbS NP dissolution does not occur in the culture. Also, the addition of 100 µM Pb(2+) to the culture media had no significant (P>0.05) effect on algal growth. The shading of light (shading effect) by PbS NPs, when simulated using activated charcoal, did not contribute to the overall toxic effect of PbS NPs which was evident by insignificant (P>0.05) reduction in the growth and antioxidant capacity of the algae. When PbS NP aggregation in culture media (without algal cells) was followed for 60 min, uncoated form aggregated rapidly reaching aggregate sizes with hydrodynamic diameter of over 2500 nm within 60 min. Effective particle-particle interaction was reduced in the GA-coated NPs. Aggregates of about 440 nm hydrodynamic diameter were formed within 35 min. Afterwards the aggregate size remained constant. It is concluded that PbS NPs have a negative effect on aquatic algae and their transformation by GA capping affects NPs aggregation properties and toxicity.


Assuntos
Goma Arábica/toxicidade , Chumbo/toxicidade , Nanopartículas/toxicidade , Polímeros/toxicidade , Volvocida/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Carotenoides/análise , Goma Arábica/química , Chumbo/química , Peroxidação de Lipídeos/efeitos dos fármacos , Nanopartículas/química , Polímeros/química , Volvocida/química , Volvocida/crescimento & desenvolvimento , Poluentes Químicos da Água/química
7.
Mol Biol Res Commun ; 3(3): 165-174, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27843980

RESUMO

The green synthesis of metallic nanoparticles is an active research area in nanotechnology. In the present study, antioxidant potential, total reducing capacity and silver nanoparticles' (Ag NPs) synthetic potential of methanolic leaf extracts of seven plant species were evaluated and compared. Antioxidant capacity, expressed as µmol Trolox equivalents g-1 DW (µmol TE g-1 DW), ranged from 116.0 to 1.80. The plants Rosmarinus sp. and Zataria Multiflora showed highest antioxidant capacities with IC50 of 1.07 and 1.22 mg ml-1, respectively. Total reducing capacity ranged from 7.6 to 0.17 mg gallic acid equivalent to g-1 DW (mg GAE g-1 DW). Plants with high antioxidant potentials also showed higher total reducing capacity. In fact, the order of the plants' reducing capacity was similar to that of their antioxidant potential. The same two plant species, i.e., Zataria Multiflora and Rosmarinus sp, with high reducing capacities, showed higher potentials for Ag NPs synthesis. It is concluded that reducing substances in the extracts contribute significantly to the antioxidant potential of the tested plant species, and plants with a high reducing capacity are excellent sources for the green synthesis of metallic nanoparticles. In addition, synthetic antioxidants have adverse effects on human health; therefore, to benefit more from the health promoting properties of plant species, evaluating their novel natural antioxidants is recommended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...