Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170367, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278261

RESUMO

Global efforts in vaccination have led to a decrease in COVID-19 mortality but a high circulation of SARS-CoV-2 is still observed in several countries, resulting in some cases of severe lockdowns. In this sense, wastewater-based epidemiology remains a powerful tool for supporting regional health administrations in assessing risk levels and acting accordingly. In this work, a dynamic artificial neural network (DANN) has been developed for predicting the number of COVID-19 hospitalized patients in hospitals in Valladolid (Spain). This model takes as inputs a wastewater epidemiology indicator for COVID-19 (concentration of RNA from SARS-CoV-2 N1 gene reported from Valladolid Wastewater Treatment Plant), vaccination coverage, and past data of hospitalizations. The model considered both the instantaneous values of these variables and their historical evolution. Two study periods were selected (from May 2021 until September 2022 and from September 2022 to July 2023). During the first period, accurate predictions of hospitalizations (with an overall range between 6 and 171) were favored by the correlation of this indicator with N1 concentrations in wastewater (r = 0.43, p < 0.05), showing accurate forecasting for 1 day ahead and 5 days ahead. The second period's retraining strategy maintained the overall accuracy of the model despite lower hospitalizations. Furthermore, risk levels were assigned to each 1 day ahead prediction during the first and second periods, showing agreement with the level measured and reported by regional health authorities in 95 % and 93 % of cases, respectively. These results evidenced the potential of this novel DANN model for predicting COVID-19 hospitalizations based on SARS-CoV-2 wastewater concentrations at a regional scale. The model architecture herein developed can support regional health authorities in COVID-19 risk management based on wastewater-based epidemiology.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , Controle de Doenças Transmissíveis , Redes Neurais de Computação
2.
Neural Netw ; 11(6): 1099-1112, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12662778

RESUMO

In this paper, a specific neural network based model for the identification of non-linear systems is proposed. This neural network structure is able to identify a state space non-linear model of the plant. The use of the state space representation presents several advantages that must be taken into account. One of the most important advantages is that the resulting neural model can be easily linearized around different operating points, allowing application of classical stability theorems from the linear systems domain to this class of neural networks. In this way, some useful theoretical results for neural modelling and identification have been obtained and presented in the paper. In this paper, several stability theorems and practical implementation issues are addressed. Examples are also presented which show the training capability of the neural network and the validity of the theory presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA