Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 332: 103247, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126917

RESUMO

Physical chemistry aspects are emphasized in this comprehensive review of self-assembly phenomena involving lignin in various forms. Attention to this topic is justified by the very high availability, low cost, and renewable nature of lignin, together with opportunities to manufacture diverse products, for instance, polymers/resins, bioplastics, carbon fibers, bio-asphalt, sunscreen components, hydrophobic layers, and microcapsules. The colloidal lignin material, nanoparticles, and microstructures that can be formed as a result of changes in solvent properties, pH, or other adjustments to a suspending medium have been shown to depend on many factors. Such factors are examined in this work based on the concepts of self-assembly, which can be defined as an organizing principle dependent on specific attributes of the starting entities themselves. As a means to promote such concepts and to facilitate further development of nano-scale lignin products, this article draws upon evidence from a wide range of studies. These include investigations of many different plant sources of lignin, processes of delignification, solvent systems, anti-solvent systems or other means of achieving phase separation, and diverse means of achieving colloidal stability (if desired) of resulting self-assembled lignin structures. Knowledge of the self-organization behavior of lignin can provide significant structural information to optimize the use of lignin in value-added applications. Examples include chemical conditions and preparation procedures in which lignin-related compounds of particles organize themselves as spheres, hollow spheres, surface-bound layers, and a variety of other structures. Published articles show that such processes can be influenced by the selection of lignin type, pulping or extraction processes, functional groups such as phenolic, carboxyl, and sulfonate, chemical derivatization reactions, solvent applications, aqueous conditions, and physical processes, such as agitation. Precipitation from non-aqueous solutions represents a key focus of lignin self-assembly research. The review also considers stabilization mechanisms of self-assembled lignin-related structures.

2.
Heliyon ; 9(3): e14122, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950652

RESUMO

Lignocellulosic materials are widely used for food packaging due to their renewable and biodegradable nature. However, their porous and absorptive properties can lead to the uptake and retention of bacteria during food processing, transportation, and storage, which pose a potential risk for outbreaks of foodborne disease. Thus, it is of great importance to understand how bacteria proliferate and survive on lignocellulosic surfaces. The aim of this research was to compare the growth and survivability of Salmonella Typhimurium and Listeria innocua on bleached and unbleached paper packaging materials. Two different paper materials were fabricated to simulate linerboard from fully bleached and unbleached market pulps and inoculated with each bacterium at high bacterial loads (107 CFU). The bacteria propagated during the first 48 h of incubation and persisted at very high levels (>107 CFU/cm2) for 40 days for all paper and bacterium types. However, the unbleached paper allowed for a greater degree of bacterial growth to occur compared to bleached paper, suspected to be due to the more hydrophobic nature of the unbleached, lignin-containing fibers. Several other considerations may also alter the behavior of bacteria on lignocellulosic materials, such as storage conditions, nutrient availability, and chemical composition of the fibers.

3.
Environ Sci Pollut Res Int ; 29(40): 60584-60599, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35420340

RESUMO

Nonwoven products are widely used in disposable products, such as wipes, diapers, and masks. Microfibers shed from these products in the aquatic and air environment have not been fully described. In the present study, 15 commercial single-use nonwoven products (wipes) and 16 meltblown nonwoven materials produced in a pilot plant were investigated regarding their microfiber generation in aquatic and air environments and compared to selected textile materials and paper tissue materials. Microfibers shed in water were studied using a Launder Ometer equipment (1-65 mg of microfibers per gram material), and microfibers shed in air were evaluated using a dusting testing machine that shakes a piece of the nonwoven back and forth (~ 4 mg of microfibers per gram material). The raw materials and bonding technologies affected the microfiber generation both in water and air conditions. When the commercial nonwovens contained less natural cellulosic fibers, less microfibers were generated. Bonding with hydroentangling and/or double bonding by two different bonding methods could improve the resistance to microfiber generation. Meltblown nonwoven fabrics generated fewer microfibers compared to the other commercial nonwovens studied here, and the manufacturing factors, such as DCD (die-to-collector distance) and air flow rate, affected the tendency of microfiber generation. The results suggest that it is possible to control the tendency of microfiber shedding through the choice of operating parameters during nonwoven manufacturing processes.


Assuntos
Têxteis , Poluentes Químicos da Água , Águas Residuárias , Água , Poluentes Químicos da Água/análise
4.
Carbohydr Polym ; 254: 117430, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357905

RESUMO

This study aims to understand the effect of micro- and nanofibrillated cellulose (MNFC) on the tensile index, softness, and water absorbency of tissue paper. MNFC was produced from four different fiber sources. The results show that MNFC acts as an effective strength enhancer at the expense of a reduced water absorbency and softness. The impact of the fiber source on MNFC manufacturing cost and the trade-off with performance was also investigated. MNFCs produced from southern bleached hardwood kraft, northern bleached softwood kraft, and deinked pulp exhibited similar performance trends with the MNFC from the deinked pulp having a significantly lower cost. This suggests that MNFCs with similar degrees of fibrillation may be used interchangeably regardless of the fiber source, revealing the possibility to minimize MNFC manufacturing costs based on fiber selection. MNFC produced from bleached Eucalyptus kraft showed the lowest degree of fibrillation and the lowest strength improvements among the MNFCs evaluated.


Assuntos
Celulose/química , Eucalyptus/química , Nanofibras/química , Papel , Madeira/química , Celulose/isolamento & purificação , Humanos , Hidrólise , Higiene , Teste de Materiais , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA