Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(8): 2097-2100, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621085

RESUMO

The exploitation of the full structure of multimode light fields enables compelling capabilities in many fields including classical and quantum information science. We exploit data-encoding on the optical phase of the pulses of a femtosecond laser source for a photonic implementation of a reservoir computing protocol. Rather than intensity detection, data-reading is done via homodyne detection that accesses combinations of an amplitude and a phase of the field. Numerical and experimental results on nonlinear autoregressive moving average (NARMA) tasks and laser dynamic predictions are shown. We discuss perspectives for quantum-enhanced protocols.

2.
Opt Express ; 32(4): 6733-6747, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439372

RESUMO

Squeezing is known to be a quantum resource in many applications in metrology, cryptography, and computing, being related to entanglement in multimode settings. In this work, we address the effects of squeezing in neuromorphic machine learning for time-series processing. In particular, we consider a loop-based photonic architecture for reservoir computing and address the effect of squeezing in the reservoir, considering a Hamiltonian with both active and passive coupling terms. Interestingly, squeezing can be either detrimental or beneficial for quantum reservoir computing when moving from ideal to realistic models, accounting for experimental noise. We demonstrate that multimode squeezing enhances its accessible memory, which improves the performance in several benchmark temporal tasks. The origin of this improvement is traced back to the robustness of the reservoir to readout noise, which is increased with squeezing.

3.
Phys Rev Lett ; 130(19): 190602, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243658

RESUMO

Algorithms for associative memory typically rely on a network of many connected units. The prototypical example is the Hopfield model, whose generalizations to the quantum realm are mainly based on open quantum Ising models. We propose a realization of associative memory with a single driven-dissipative quantum oscillator exploiting its infinite degrees of freedom in phase space. The model can improve the storage capacity of discrete neuron-based systems in a large regime and we prove successful state discrimination between n coherent states, which represent the stored patterns of the system. These can be tuned continuously by modifying the driving strength, constituting a modified learning rule. We show that the associative-memory capability is inherently related to the existence of a spectral separation in the Liouvillian superoperator, which results in a long timescale separation in the dynamics corresponding to a metastable phase.

4.
IEEE Trans Neural Netw Learn Syst ; 33(6): 2664-2675, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34460401

RESUMO

Reservoir computing has emerged as a powerful machine learning paradigm for harvesting nontrivial information processing out of disordered physical systems driven by sequential inputs. To this end, the system observables must become nonlinear functions of the input history. We show that encoding the input to quantum or classical fluctuations of a network of interacting harmonic oscillators can lead to a high performance comparable to that of a standard echo state network in several nonlinear benchmark tasks. This equivalence in performance holds even with a linear Hamiltonian and a readout linear in the system observables. Furthermore, we find that the performance of the network of harmonic oscillators in nonlinear tasks is robust to errors both in input and reservoir observables caused by external noise. For any reservoir computing system with a linear readout, the magnitude of trained weights can either amplify or suppress noise added to reservoir observables. We use this general result to explain why the oscillators are robust to noise and why having precise control over reservoir memory is important for noise robustness in general. Our results pave the way toward reservoir computing harnessing fluctuations in disordered linear systems.

5.
Phys Rev Lett ; 127(10): 100502, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533342

RESUMO

Closed quantum systems exhibit different dynamical regimes, like many-body localization or thermalization, which determine the mechanisms of spread and processing of information. Here we address the impact of these dynamical phases in quantum reservoir computing, an unconventional computing paradigm recently extended into the quantum regime that exploits dynamical systems to solve nonlinear and temporal tasks. We establish that the thermal phase is naturally adapted to the requirements of quantum reservoir computing and report an increased performance at the thermalization transition for the studied tasks. Uncovering the underlying physical mechanisms behind optimal information processing capabilities of spin networks is essential for future experimental implementations and provides a new perspective on dynamical phases.

6.
Sci Rep ; 11(1): 12834, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145329

RESUMO

It has long been recognized that emission of radiation from atoms is not an intrinsic property of individual atoms themselves, but it is largely affected by the characteristics of the photonic environment and by the collective interaction among the atoms. A general belief is that preventing full decay and/or decoherence requires the existence of dark states, i.e., dressed light-atom states that do not decay despite the dissipative environment. Here, we show that, contrary to such a common wisdom, decoherence suppression can be intermittently achieved on a limited time scale, without the need for any dark state, when the atom is coupled to a chiral ring environment, leading to a highly non-exponential staircase decay. This effect, that we refer to as intermittent decoherence blockade, arises from periodic destructive interference between light emitted in the present and light emitted in the past, i.e., from delayed coherent quantum feedback.

7.
Phys Rev Lett ; 126(13): 130403, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861108

RESUMO

We introduce the multipartite collision model, defined in terms of elementary interactions between subsystems and ancillas, and show that it can simulate the Markovian dynamics of any multipartite open quantum system. We develop a method to estimate an analytical error bound for any repeated interactions model, and we use it to prove that the error of our scheme displays an optimal scaling. Finally, we provide a simple decomposition of the multipartite collision model into elementary quantum gates, and show that it is efficiently simulable on a quantum computer according to the dissipative quantum Church-Turing theorem, i.e., it requires a polynomial number of resources.

8.
Phys Rev Lett ; 123(2): 023604, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386511

RESUMO

Synchronization phenomena have been recently reported in the quantum realm at the atomic level due to collective dissipation. In this work we propose a dimer lattice of trapped atoms realizing a dissipative spin model where quantum synchronization occurs instead in the presence of local dissipation. Atom synchronization is enabled by the inhomogeneity of staggered local losses in the lattice and is favored by an increase of spins detuning. A comprehensive approach to quantum synchronization based on different measures considered in the literature allows us to identify the main features of different synchronization regimes.

9.
Phys Rev Lett ; 121(12): 120602, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296131

RESUMO

We analyze the role of indirect quantum measurements in work extraction from quantum systems in nonequilibrium states. In particular, we focus on the work that can be obtained by exploiting the correlations shared between the system of interest and an additional ancilla, where measurement backaction introduces a nontrivial thermodynamic tradeoff. We present optimal state-dependent protocols for extracting work from both classical and quantum correlations, the latter being measured by discord. Our quantitative analysis establishes that, while the work content of classical correlations can be fully extracted by performing local operations on the system of interest, accessing work related to quantum discord requires a specific driving protocol that includes interaction between system and ancilla.

10.
Sci Rep ; 7: 42050, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176835

RESUMO

Practical implementations of quantum technology are limited by unavoidable effects of decoherence and dissipation. With achieved experimental control for individual atoms and photons, more complex platforms composed by several units can be assembled enabling distinctive forms of dissipation and decoherence, in independent heat baths or collectively into a common bath, with dramatic consequences for the preservation of quantum coherence. The cross-over between these two regimes has been widely attributed in the literature to the system units being farther apart than the bath's correlation length. Starting from a microscopic model of a structured environment (a crystal) sensed by two bosonic probes, here we show the failure of such conceptual relation, and identify the exact physical mechanism underlying this cross-over, displaying a sharp contrast between dephasing and dissipative baths. Depending on the frequency of the system and, crucially, on its orientation with respect to the crystal axes, collective dissipation becomes possible for very large distances between probes, opening new avenues to deal with decoherence in phononic baths.

11.
Phys Rev E ; 93(5): 052120, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27300843

RESUMO

We analyze the entropy production and the maximal extractable work from a squeezed thermal reservoir. The nonequilibrium quantum nature of the reservoir induces an entropy transfer with a coherent contribution while modifying its thermal part, allowing work extraction from a single reservoir, as well as great improvements in power and efficiency for quantum heat engines. Introducing a modified quantum Otto cycle, our approach fully characterizes operational regimes forbidden in the standard case, such as refrigeration and work extraction at the same time, accompanied by efficiencies equal to unity.

12.
Sci Rep ; 6: 26861, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27230125

RESUMO

We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity.


Assuntos
Simulação por Computador , Teoria Quântica , Meio Ambiente , Modelos Estatísticos , Oscilometria , Processamento de Sinais Assistido por Computador
13.
Sci Rep ; 6: 19607, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26786857

RESUMO

We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.


Assuntos
Modelos Teóricos , Teoria Quântica , Algoritmos
14.
Sci Rep ; 3: 1439, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23486526

RESUMO

Synchronization is one of the paradigmatic phenomena in the study of complex systems. It has been explored theoretically and experimentally mostly to understand natural phenomena, but also in view of technological applications. Although several mechanisms and conditions for synchronous behavior in spatially extended systems and networks have been identified, the emergence of this phenomenon has been largely unexplored in quantum systems until very recently. Here we discuss synchronization in quantum networks of different harmonic oscillators relaxing towards a stationary state, being essential the form of dissipation. By local tuning of one of the oscillators, we establish the conditions for synchronous dynamics, in the whole network or in a motif. Beyond the classical regime we show that synchronization between (even unlinked) nodes witnesses the presence of quantum correlations and entanglement. Furthermore, synchronization and entanglement can be induced between two different oscillators if properly linked to a random network.

15.
Phys Rev Lett ; 110(1): 010501, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383765

RESUMO

We introduce the discording power of a unitary transformation, which assesses its capability to produce quantum discord, and analyze in detail the generation of discord by relevant classes of two-qubit gates. Our measure is based on the Cartan decomposition of two-qubit unitaries and on evaluating the maximum discord achievable by a unitary upon acting on classical-classical states at fixed purity. We find that there exist gates which are perfect discorders for any value of purity µ, and that they belong to a class of operators that includes the sqrt[SWAP]. Other gates, even those universal for quantum computation, do not possess the same property: the CNOT, for example, is a perfect discorder only for states with low or unit purity, but not for intermediate values. The discording power of a two-qubit unitary also provides a generalization of the corresponding measure defined for entanglement to any value of the purity.

16.
Phys Rev Lett ; 107(19): 190501, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22181588

RESUMO

Generalizing the quantifiers used to classify correlations in bipartite systems, we define genuine total, quantum, and classical correlations in multipartite systems. The measure we give is based on the use of relative entropy to quantify the distance between two density matrices. Moreover, we show that, for pure states of three qubits, both quantum and classical bipartite correlations obey a ladder ordering law fixed by two-body mutual informations, or, equivalently, by one-qubit entropies.

17.
Phys Rev Lett ; 100(17): 173902, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18518289

RESUMO

We put forward a method that allows the experimental determination of the entire spatial mode spectrum of any arbitrary monochromatic wave field in a plane normal to its propagation direction. For coherent optical fields, our spatial spectrum analyzer can be implemented with a small number of benchmark refractive elements embedded in a single Mach-Zehnder interferometer. We detail an efficient setup for measuring in the Hermite-Gaussian mode basis. Our scheme should also be feasible in the context of atom optics for analyzing the spatial profiles of macroscopic matter waves.


Assuntos
Campos Eletromagnéticos , Modelos Teóricos
18.
Phys Rev Lett ; 99(6): 063907, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17930828

RESUMO

We consider a large class of optical cavities and gain media with an off-axis external feedback which introduces a two-point nonlocality. This nonlocality moves the lasing threshold and opens large windows of control parameters where weak light spots can be strongly amplified while the background radiation remains very low. Furthermore, transverse phase and group velocities of a signal can be independently tuned and this enables us to steer it nonmechanically, to control its spatial chirping, and to split it into two counterpropagating ones.

19.
Opt Express ; 15(23): 15214-27, 2007 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19550805

RESUMO

We study the mechanical properties of a broad class of multimode and polarization light patterns, resulting from the interference and superposition of waves in helical modes. General local and global properties of energy and angular momentum (AM) are identified, in order to define the conditions to optimize the AM with increasing beam complexity. We show the possibility to engineer independently the local densities of optical AM and energy, opening the possibility of an experimental demonstration of their respective effects in light-matter interaction. Multimode Laguerre-Gaussian beams also allows us to tailor the local spin AM through the Gouy phase.

20.
Phys Rev Lett ; 96(11): 113901, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16605821

RESUMO

We introduce the concept of quasi-intrinsic angular momentum to denote fields for which the mean value of the angular momentum is unaltered by a lateral shift of the rotation axis but the spectrum changes. This property is exemplified by the orbital angular momentum of a beam of light about its propagation direction. We propose an interferometric experiment to measure efficiently the exact angular momentum spectrum and variance for light beams with any arbitrary spatial distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...