Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Heliyon ; 9(7): e17189, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483770

RESUMO

Thousands of tons of residual lignocellulosic biomass are produced and discarded by agroindustries in the Amazon. These biomasses could be harnessed and used in the preparation of activated carbon, in view of the growing demand for this product with high added value, however, little is known about their characteristics, in addition to their potential as precursors of activated carbon. Therefore, the aim of this work was to evaluate the potential of four different biomasses in the preparation and quality of activated carbon. Residues from the processing of the fruits of acai, babassu, Brazil nut, and oil palm were collected, characterized, carbonized, physically activated with CO2, and characterized. The contents of the total extractives, insoluble lignin, minerals, holocellulose, and elemental (CHNS-O) were analyzed. The surface area and surface morphology were determined from the AC produced, and adsorption tests for methylene blue and phenol were performed. The four biomasses showed potential for use in the preparation of CA; the residues presented high contents of lignin (21.83-55.76%) and carbon (46.49-53.79%). AC were predominantly microporous, although small mesopores could be observed. The AC had a surface area of 569.65-1101.26 m2 g-1, a high methylene blue (93-390 mg g-1), and phenol (159-595 mg g-1) adsorption capacities. Babassu-AC stood out compared to the AC of the other analyzed biomasses, reaching the best results.

3.
Materials (Basel) ; 13(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384821

RESUMO

A new mesoporous Zn1-xMxAl2O4 photocatalyst was prepared using the metal-chitosan complexation method with different degrees of Zn2+ cation substitution with cobalt and nickel ions (M = Co2+ and Ni2+). Characterization using X-ray diffraction (XRD), Infrared absorption spectrometry (FTIR), energy dispersion spectroscopy (EDS), diffuse reflectance spectrometry (DRS), scanning electron miscoscopy (SEM), transmission electron miscroscopy (TEM), N2 adsorption- desorption isotherms using the Barrett-Joyner-Halenda (BJH) method, thermogravimetric analysis (TG) and differential thermal analysis (DTA) confirmed the formation of the spinel phase and high purity for all samples. N2 adsorption/desorption and size pore distribution confirmed the high surface area. The photocatalytic activity of Zn1-xMxAl2O4 and the effect of replacing Zn2+ ions with Ni2+ and Co2+ on the degradation of rhodamine B under ultraviolet light were studied in detail. The sample containing 0.1 mol of cobalt had the highest removal rate reaching 83%, favored by surface area and material bandgap (109 m2 g-1 and 2.19 eV, respectively).

4.
RSC Adv ; 10(34): 20245-20256, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35520450

RESUMO

In the present study, heterogeneous acid catalysts for fatty acid esterification reactions were synthesized using agro-industrial waste from murumuru kernel shells. The waste was carbonized and functionalized with concentrated sulfuric acid under different sulfonation conditions, obtaining the sulfonated biochar. The results indicate that the best sulfonation conditions were obtained with a contact time of 4 h, the temperature of 200 °C, and a solid-acid ratio of 1 : 10 (w/v). The best catalyst was characterized by acid-base titration for the determination of total acid density, X-ray diffraction, scanning electron microscopy, X-ray energy dispersion spectroscopy, Fourier transform infrared spectroscopy and thermal analysis. Reaction conditions of oleic acid with methanol and the viability of catalyst reuse were also investigated. A conversion of 97.2% was achieved under optimum esterification reaction conditions, employing 5% catalyst, 10 : 1 molar ratio of methanol to oleic acid, during 1.5 h at a temperature of 90 °C. After 4 reaction cycles, the catalyst preserved its efficiency at 66.3% conversion. The catalyst activity was evaluated in reactions using palmitic acid, soybean fatty acid distillate, palm fatty acid distillate, and coconut fatty acid distillate. The results demonstrate that the catalyst is applicable and efficient in esterification reactions of raw materials, containing different fatty acid compositions since different carbonized materials have varying abilities to combine acid groups. This work reveals the promising feasibility of using biomass generated in large quantities by the agroindustry for the development of a new heterogeneous acid catalyst for biodiesel production.

5.
Molecules ; 24(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597829

RESUMO

The buriti palm (Mauritia flexuosa) is a palm tree widely distributed throughout tropical South America. The oil extracted from the fruits of this palm tree is rich in natural antioxidants. The by-products obtained from the buriti palm have social and economic importance as well, hence the interest in adding value to the residue left from refining this oil to obtain biofuel. The process of methyl esters production from the buriti oil soapstock was optimized considering acidulation and esterification. The effect of the molar ratio of sulfuric acid (H2SO4) to soapstock in the range from 0.6 to 1.0 and the reaction time (30⁻90 min) were analyzed. The best conditions for acidulation were molar ratio 0.8 and reaction time of 60 min. Next, the esterification of the fatty acids obtained was performed using methanol and H2SO4 as catalyst. The effects of the molar ratio (9:1⁻27:1), percentage of catalyst (2⁻6%) and reaction time (1⁻14 h) were investigated. The best reaction conditions were: 18:1 molar ratio, 4% catalyst and 14 h reaction time, which resulted in a yield of 92% and a conversion of 99.9%. All the key biodiesel physicochemical characterizations were within the parameters established by the Brazilian standard. The biodiesel obtained presented high ester content (96.6%) and oxidative stability (16.1 h).


Assuntos
Arecaceae/química , Biocombustíveis , Carotenoides/química , Óleo de Palmeira/química , Óleos de Plantas/química , Biotransformação , Catálise , Fenômenos Químicos , Esterificação , Ésteres/química , Concentração de Íons de Hidrogênio
6.
Magn Reson Chem ; 51(2): 69-71, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23225640

RESUMO

Production of alternative fuels, such as biodiesel, from transesterification of vegetable oil driven by heterogeneous catalysts is a promising alternative to fossil diesel. However, achieving a successful substitution for a new renewable fuel depends on several quality parameters. (1)H NMR spectroscopy was used to determine the amount of methyl esters, free glycerin and acid number in the transesterification of soybean oil with methanol in the presence of hydrotalcite-type catalyst to produce biodiesel. Reaction parameters, such as temperature and time, were used to evaluate soybean oil methyl esters rate conversion. Temperatures of 100 to 180 °C and times of 20 to 240 min were tested on a 1 : 12 molar ratio soybean oil/methanol reaction. At 180 °C/240 min conditions, a rate of 94.5 wt% of methyl esters was obtained, where free glycerin and free fatty acids were not detected.


Assuntos
Ácidos/análise , Biocombustíveis , Ésteres/análise , Glicerol/análise , Glycine max/química , Óleo de Soja/química , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...