Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 90(11): 2560-2572, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34160071

RESUMO

Directional or stabilising selection should drive the expression of a dominant movement phenotype within a population. Widespread persistence of multiple movement phenotypes within wild populations, however, suggests that individuals that move (movers) and those that do not (residents) can have commensurate performance. The costs and benefits of mover and resident phenotypes remain poorly understood. Here, we explored how the presence and timing of movements are correlated with annual somatic growth rates, a useful proxy for performance because it is easily measured and rapidly reflects environmental changes. We used otolith growth measurements and stable isotope analyses to recreate growth and among-reach movement histories of a partially migrating, long-lived freshwater fish, golden perch Macquaria ambigua. We compared the association between movement and growth at two temporal scales: (a) short-term (annual) differences in growth, in the years preceding, during or following movement; and (b) long-term (lifetime) differences in growth. Overall, 59% of individuals performed at least one among-reach movement, with these individuals subsequently more likely to move repeatedly throughout their lives. Movers grew faster than residents, with this difference most pronounced in the juvenile and early adult stages, when most movements occurred. Annual growth did not, however, change immediately prior to or following a specific movement event. Among-individual variation in growth was initially higher for residents than for movers but decreased with age, at a faster rate for residents than for movers, such that levels conformed after 5 years of age. Our results indicate that lifetime movement is linked to faster growth in the early years of a fish's life. These faster growing movers are likely to be larger at a given age, leading to numerous potential benefits. However, the persistence of resident phenotypes suggests that there is likely a cost-benefit trade-off to moving. The presence of multiple movement phenotypes may contribute to the resilience of populations by buffering against naturally and anthropogenically exacerbated environmental variability.


Assuntos
Percas , Perciformes , Animais , Água Doce , Movimento , Membrana dos Otólitos
2.
Environ Manage ; 61(3): 432-442, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28421268

RESUMO

Carp are a highly successful invasive fish species, now widespread, abundant and considered a pest in south-eastern Australia. To date, most management effort has been directed at reducing abundances of adult fish, with little consideration of population growth through reproduction. Environmental water allocations are now an important option for the rehabilitation of aquatic ecosystems, particularly in the Murray-Darling Basin. As carp respond to flows, there is concern that environmental watering may cause floodplain inundation and provide access to spawning habitats subsequently causing unwanted population increase. This is a management conundrum that needs to be carefully considered within the context of contemporary river flow management (natural, environmental, irrigation). This paper uses a population model to investigate flow-related carp population dynamics for three case studies in the Murray-Darling Basin: (1) river and terminal lakes; (2) wetlands and floodplain lakes; and (3) complex river channel and floodplain system. Results highlight distinctive outcomes depending on site characteristics. In particular, the terminal lakes maintain a significant source carp population regardless of river flow; hence any additional within-channel environmental flows are likely to have little impact on carp populations. In contrast, large-scale removal of carp from the lakes may be beneficial, especially in times of extended low river flows. Case studies 2 and 3 show how wetlands, floodplain lakes and the floodplain itself can now often be inundated for several months over the carp spawning season by high volume flows provided for irrigation or water transfers. Such inundations can be a major driver of carp populations, compared to within channel flows that have relatively little effecton recruitment. The use of a population model that incorporates river flows and different habitats for this flow-responsive species, allows for the comparison of likely population outcomes for differing hydrological scenarios to improve the management of risks relating to carp reproduction and flows.


Assuntos
Migração Animal , Carpas , Conservação dos Recursos Naturais/métodos , Dinâmica Populacional , Rios , Animais , Espécies Introduzidas , Modelos Biológicos , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...