Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
PLoS One ; 18(10): e0293199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878626

RESUMO

The control of non-coding repeated DNA by DNA methylation plays an important role in genomic stability, contributing to health and healthy aging. Mind-body practices can elicit psychophysical wellbeing via epigenetic mechanisms, including DNA methylation. However, in this context the effects of movement meditations have rarely been examined. Consequently, the current study investigates the effects of a specifically structured movement meditation, called the Quadrato Motor Training (QMT) on psychophysical wellbeing and on the methylation level of repeated sequences. An 8-week daily QMT program was administered to healthy women aged 40-60 years and compared with a passive control group matched for gender and age. Psychological well-being was assessed within both groups by using self-reporting scales, including the Meaning in Life Questionnaire [MLQ] and Psychological Wellbeing Scale [PWB]). DNA methylation profiles of repeated sequences (ribosomal DNA, LINE-1 and Alu) were determined in saliva samples by deep-sequencing. In contrast to controls, the QMT group exhibited increased Search for Meaning, decreased Presence of Meaning and increased Positive Relations, suggesting that QMT may lessen the automatic patterns of thinking. In the QMT group, we also found site-specific significant methylation variations in ribosomal DNA and LINE-1 repeats, consistent with increased genome stability. Finally, the correlations found between changes in methylation and psychometric indices (MLQ and PWB) suggest that the observed epigenetic and psychological changes are interrelated. Collectively, the current results indicate that QMT may improve psychophysical health trajectories by influencing the DNA methylation of specific repetitive sequences.


Assuntos
Metilação de DNA , Movimento , Humanos , Feminino , Projetos Piloto , Epigênese Genética , DNA Ribossômico
2.
Cells ; 12(16)2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37626916

RESUMO

One of the hallmarks of microgravity-induced effects in several cellular models is represented by the alteration of oxidative balance with the consequent accumulation of reactive oxygen species (ROS). It is well known that male germ cells are sensitive to oxidative stress and to changes in gravitational force, even though published data on germ cell models are scarce. We previously studied the effects of simulated microgravity (s-microgravity) on a 2D cultured TCam-2 seminoma-derived cell line, considered the only human cell line available to study in vitro mitotically active human male germ cells. In this study, we used a corresponding TCam-2 3D cell culture model that mimics cell-cell contacts in organ tissue to test the possible effects induced by s-microgravity exposure. TCam-2 cell spheroids were cultured for 24 h under unitary gravity (Ctr) or s-microgravity conditions, the latter obtained using a random positioning machine (RPM). A significant increase in intracellular ROS and mitochondria superoxide anion levels was observed after RPM exposure. In line with these results, a trend of protein and lipid oxidation increase and increased pCAMKII expression levels were observed after RPM exposure. The ultrastructural analysis via transmission electron microscopy revealed that RPM-exposed mitochondria appeared enlarged and, even if seldom, disrupted. Notably, even the expression of the main enzymes involved in the redox homeostasis appears modulated by RPM exposure in a compensatory way, with GPX1, NCF1, and CYBB being downregulated, whereas NOX4 and HMOX1 are upregulated. Interestingly, HMOX1 is involved in the heme catabolism of mitochondria cytochromes, and therefore the positive modulation of this marker can be associated with the observed mitochondria alteration. Altogether, these data demonstrate TCam-2 spheroid sensitivity to acute s-microgravity exposure and indicate the capability of these cells to trigger compensatory mechanisms that allow them to overcome the exposure to altered gravitational force.


Assuntos
Antioxidantes , Ausência de Peso , Humanos , Masculino , Espécies Reativas de Oxigênio , Mitocôndrias , Esferoides Celulares
3.
Cancers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568827

RESUMO

In this study we analyzed the expression of Yin and Yang 1 protein (YY1), a member of the noncanonical PcG complexes, in AML patient samples and AML cell lines and the effect of YY1 downregulation on the AML differentiation block. Our results show that YY1 is significantly overexpressed in AML patient samples and AML cell lines and that YY1 knockdown relieves the differentiation block. YY1 downregulation in two AML cell lines (HL-60 and OCI-AML3) and one AML patient sample restored the expression of members of the CEBP protein family, increased the expression of extrinsic growth factors/receptors and surface antigenic markers, induced morphological cell characteristics typical of myeloid differentiation, and sensitized cells to retinoic acid treatment and to apoptosis. Overall, our data show that YY1 is not a secondary regulator of myeloid differentiation but that, if overexpressed, it can play a predominant role in myeloid differentiation block.

4.
Nutrients ; 15(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37432362

RESUMO

An inadequate selenium (Se) status can accelerate the aging process, increasing the vulnerability to age-related diseases. The study aimed to investigate plasma Se and Se species in a large population, including 2200 older adults from the general population (RASIG), 514 nonagenarian offspring (GO), and 293 GO Spouses (SGO). Plasma Se levels in women exhibit an inverted U-shaped pattern, increasing with age until the post-menopausal period and then declining. Conversely, men exhibit a linear decline in plasma Se levels with age. Subjects from Finland had the highest plasma Se values, while those from Poland had the lowest ones. Plasma Se was influenced by fish and vitamin consumption, but there were no significant differences between RASIG, GO, and SGO. Plasma Se was positively associated with albumin, HDL, total cholesterol, fibrinogen, and triglycerides and negatively associated with homocysteine. Fractionation analysis showed that Se distribution among plasma selenoproteins is affected by age, glucometabolic and inflammatory factors, and being GO or SGO. These findings show that sex-specific, nutritional, and inflammatory factors play a crucial role in the regulation of Se plasma levels throughout the aging process and that the shared environment of GO and SGO plays a role in their distinctive Se fractionation.


Assuntos
Selênio , Feminino , Humanos , Animais , Masculino , Nonagenários , Vitaminas , Comportamento Alimentar
5.
Prog Brain Res ; 277: 63-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37301571

RESUMO

Mind-body practices and meditation have been increasingly studied in recent years due to their beneficial effects on cognition, and physical and psychological health. Growing evidence suggests that these practices could be utilized as interventions to impact age-related biological processes, such as cognitive decline, inflammation, and homeostatic dysregulation. Indeed, it has been reported that mindful meditation may induce neuroplasticity in brain regions involved in control of attention, emotional regulation, and self-awareness. In the current research we studied the effects of a recently developed movement meditation, named the Quadrato Motor Training (QMT), on the proinflammatory cytokine Interleukin-1beta (IL-1ß), utilizing a pre-post design. In addition to its role in the immune system, IL-1ß is also an important mediator of neuroimmune responses related to sickness behavior, and plays a role in complex cognitive processes, such as synaptic plasticity, neurogenesis, and neuromodulation. Thirty healthy participants were divided in two groups, one performing QMT for 2 months, and one passive control group. Salivary IL-1ß expression was examined by ELISA to measure protein levels and by qRT-PCR to quantify mRNA. In addition, the methylation profile of the IL-1ß promoter was examined. All participants further conducted the Alternate Uses Task (AUT) and Hidden Figure Test (HFT), to measure their creativity and spatial cognition. The results showed that, following QMT practice, IL-1ß protein level decreased and creativity increased, compared to the control group. These data demonstrate that QMT may help reduce inflammatory states and promote cognitive improvement, highlighting the importance of non-pharmacological approaches to health and well-being.


Assuntos
Cognição , Criatividade , Condicionamento Físico Humano , Humanos , Encéfalo , Cognição/fisiologia , Interleucina-1beta/metabolismo , Condicionamento Físico Humano/métodos
6.
Tuberculosis (Edinb) ; 139: 102327, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857964

RESUMO

Tuberculosis has a negative economic impact on buffalo farming, and it poses a potential threat to human health. Interferon-gamma (IFN-γ) plays a central role in protection against mycobacterial diseases, illustrating the importance of T-cell mediated immune responses in tuberculosis infection. Recently, the expression of Caspase-3, a critical executor of apoptosis, in M. tuberculosis-specific IFN-γ+CD4+ T cells was used as a new marker to distinguish active from latent tuberculosis infection in humans. The aims of this work were to develop a whole blood flow cytometric assay to detect the production of IFN-γ and the activation of Caspase-3 by CD4+ T lymphocytes from water buffalo and to evaluate whether these parameters can discriminate between healthy and M. bovis naturally infected buffaloes. A total of 35 Italian Mediterranean buffaloes were grouped in two groups: uninfected and M. bovis infected (based on the results of antemortem diagnostic tests: single intradermal tuberculin (SIT) and ELISA IFN-γ tests). Whole blood was incubated for 6 h with tubercular antigens: PPD-B, PPD-A, ESAT-6/CFP-10 and a new mix of precocious secreted antigens (PA). Our results showed a significant increase in the percentage of IFN-γ+CD4+ T cells in infected compared to the uninfected animals after each stimulus. Improved sensitivity of the assay was obtained by including the stimulation with the new mix of PA. Interestingly, we observed a concomitant decrease in percentage of Caspase-3+CD4+ T cells in M. bovis infected animals compared to the control healthy ones, regardless of the stimulus used. Overall, these results showed that M. bovis infection activates CD4+ T lymphocytes to produce IFN-γ and at the same time causes a concomitant decrease of Caspase-3 activation in CD4+ T cells. This study for the first time in water buffalo describes the development of a whole blood flow cytometric assay for the detection of IFN-γ producing CD4+ T cells and proposes the expression of active Caspase-3 as an additional bovine TB biomarker. Although further studies are needed to better understand the mechanisms of Caspase-3-mediated cell death during tuberculosis, our data can help to better understand the cellular immune response to M. bovis infection in buffalo species.


Assuntos
Tuberculose Latente , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Bovinos , Búfalos , Caspase 3/metabolismo , Tuberculose/microbiologia , Interferon gama/metabolismo , Tuberculose Latente/microbiologia , Linfócitos T CD4-Positivos , Tuberculina , Morte Celular , Antígenos de Bactérias
7.
Front Vet Sci ; 10: 1327148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322426

RESUMO

Heat stress negatively affects health, welfare, and livestock productivity by impairing immune function, increasing disease incidence. In recent years, there has been increasing interest in understanding the immune system of water buffalo due to the growing economic impact of this species for the high quality and nutritional value of buffalo milk. While there are common responses across bovine and buffalo species, there are also some species-specific variations in the physiological responses to heat stress, mainly attributed to differences in metabolism and heat dissipation efficiency. At cellular level, the exposure to thermal stress induces several anomalies in cell functions. However, there is limited knowledge about the differential response of bovine and buffalo leucocytes to early and late exposure to different degrees of thermal exposure. The aim of this study was to compare the in vitro effect of hyperthermia on apoptosis and phagocytosis in leukocytes from bovine and buffalo species. For this, whole blood samples of six bovines and nine buffaloes were incubated at 39°C (mimicking normothermia condition) or 41°C (mimicking heat stress condition) for 1, 2, and 4 h. Two flow cytometric assays were then performed to evaluate apoptosis and determine functional capacity of phagocytic cells (neutrophils and monocytes). The results showed that the viability of bovine and buffalo leukocytes was differently affected by temperature and time of in vitro exposure. A higher percentage of apoptotic leukocytes was observed in bovines than in buffaloes at 39°C (3.19 vs. 1.51, p < 0.05) and 41°C (4.01 vs. 1.69, p < 0.05) and for all incubation time points (p < 0.05). In contrast, no difference was observed in the fraction of necrotic leukocytes between the two species. In both species, lymphocytes showed the highest sensitivity to hyperthermia, showing an increased apoptosis rates along with increased incubation time. In bovine, apoptotic lymphocytes increased from 5.79 to 12.7% at 39°C (p < 0.05), in buffalo, this population increased from 1.50 to 3.57% at 39°C and from 2.90 to 4.99% at 41°C (p < 0.05). Although no significant differences were found between the two species regarding the percentage of phagocytic neutrophils, lower phagocytosis capacity values (MFI, mean fluorescence intensity) were found in bovines compared with buffaloes at 41°C (27960.72 vs. 53676.45, p > 0.05). However, for monocytes, the differences between species were significant for both phagocytosis activity and capacity with lower percentages of bovine phagocytic monocytes after 2 h at 39°C and after 1 h at 41°C. The bovine monocytes showed lower MFI values for all temperature and time variations than buffaloes (37538.91 vs. 90445.47 at 39°C and 33752.91 vs. 70278.79 at 41°C, p < 0.05). In conclusion, the current study represents the first report on the comparative analysis of the effect of in vitro heat stress on bovine and buffalo leukocyte populations, highlighting that the leukocytes of buffalo exhibit relatively higher thermal adaptation than bovine cells.

8.
Mech Ageing Dev ; 206: 111695, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35760211

RESUMO

DNA methylation (DNAm) overwrites information about multiple extrinsic factors on the genome. Age is one of these factors. Age causes characteristic DNAm changes that are thought to be not only major drivers of normal ageing but also precursors to diseases, cancer being one of these. Although there is still much to learn about the relationship between ageing, age-related diseases and DNAm, we now know how to interpret some of the effects caused by age in the form of changes in methylation marks at specific loci. In fact, these changes form the basis of the so called "epigenetic clocks", which translate the genomic methylation profile into an "epigenetic age". Epigenetic age does not only estimate chronological age but can also predict the risk of chronic diseases and mortality. Epigenetic age is believed to be one of the most accurate metrics of biological age. Initial evidence has recently been gathered pointing to the possibility that the rate of epigenetic ageing can be slowed down or even reversed. In this review, we discuss some of the most relevant advances in this field. Expected outcome is that this approach can provide insights into how to preserve health and reduce the impact of ageing diseases in humans.


Assuntos
Metilação de DNA , Epigênese Genética , Idoso , Envelhecimento/genética , Epigenômica , Humanos
9.
Front Genet ; 13: 792165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571061

RESUMO

Control of ribosome biogenesis is a critical aspect of the regulation of cell metabolism. As ribosomal genes (rDNA) are organized in repeated clusters on chromosomes 13, 14, 15, 21, and 22, trisomy of chromosome 21 confers an excess of rDNA copies to persons with Down syndrome (DS). Previous studies showed an alteration of ribosome biogenesis in children with DS, but the epigenetic regulation of rDNA genes has not been investigated in adults with DS so far. In this study, we used a targeted deep-sequencing approach to measure DNA methylation (DNAm) of rDNA units in whole blood from 69 adults with DS and 95 euploid controls. We further evaluated the expression of the precursor of ribosomal RNAs (RNA45S) in peripheral blood mononuclear cells (PBMCs) from the same subjects. We found that the rDNA promoter tends to be hypermethylated in DS concerning the control group. The analysis of epihaplotypes (the combination of methylated and unmethylated CpG sites along the same DNA molecule) showed a significantly lower intra-individual diversity in the DS group, which at the same time was characterized by a higher interindividual variability. Finally, we showed that RNA45S expression is lower in adults with DS. Collectively, our results suggest a rearrangement of the epigenetic profile of rDNA in DS, possibly to compensate for the extranumerary rDNA copies. Future studies should assess whether the regulation of ribosome biogenesis can contribute to the pathogenesis of DS and explain the clinical heterogeneity characteristic of the syndrome.

10.
Life Sci ; 284: 119913, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453944

RESUMO

AIM: Biliverdin reductase-A (BVR-A) other than its canonical role in the degradation pathway of heme as partner of heme oxygenase-1 (HO1), has recently drawn attention as a protein with pleiotropic functions involved in insulin-glucose homeostasis. However, whether BVR-A expression is altered in type 2 diabetes (T2D) has never been evaluated. MAIN METHODS: BVR-A protein levels were evaluated in T2D (n = 44) and non-T2D (n = 29) subjects, who underwent complete clinical workup and routine biochemistry. In parallel, levels HO1, whose expression is regulated by BVR-A as well as levels of tumor necrosis factor α (TNFα), which is a known repressor for BVR-A with pro-inflammatory properties, were also assessed. KEY FINDINGS: BVR-A levels were significantly lower in T2D subjects than in non-T2D subjects. Reduced BVR-A levels were associated with greater body mass, systolic blood pressure, fasting blood glucose (FBG), glycated hemoglobin (HbA1c), triglycerides, transaminases and TNFα, and with lower high-density lipoprotein (HDL) levels. Lower BVR-A levels are associated with reduced HO1 protein levels and the multivariate analysis showed that BVR-A represented the main determinant of HO1 levels in T2D after adjustment. In addition, reduced BVR-A levels were able to predict the presence of T2D with AUROC = 0.69. for potential confounders. SIGNIFICANCE: Our results demonstrate for the first time that BVR-A protein levels are reduced in T2D individuals, and that this alteration strictly correlates with poor glycometabolic control and a pro-inflammatory state. Hence, these observations reinforce the hypothesis that reduced BVR-A protein levels may represent a key event in the dysregulation of intracellular pathways finally leading to metabolic disorders.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Idoso , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada
11.
Clin Epigenetics ; 13(1): 114, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001206

RESUMO

BACKGROUND: Epigenetic modifications, such as DNA methylation, can influence the genetic susceptibility to type 2 diabetes mellitus (T2DM) and the progression of the disease. Our previous studies demonstrated that the regulation of the DNA methylation pattern involves the poly(ADP-ribosyl)ation (PARylation) process, a post-translational modification of proteins catalysed by the poly(ADP-ribose) polymerase (PARP) enzymes. Experimental data showed that the hyperactivation of PARylation is associated with impaired glucose metabolism and the development of T2DM. Aims of this case-control study were to investigate the association between PARylation and global and site-specific DNA methylation in T2DM and to evaluate metabolic correlates. RESULTS: Data were collected from 61 subjects affected by T2DM and 48 healthy individuals, recruited as controls. Global levels of poly(ADP-ribose) (PAR, a surrogate of PARP activity), cytosine methylation (5-methylcytosine, 5mC) and de-methylation intermediates 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were determined in peripheral blood cells by ELISA-based methodologies. Site-specific DNA methylation profiling of SOCS3, SREBF1 and TXNIP candidate genes was performed by mass spectrometry-based bisulfite sequencing, methyl-sensitive endonucleases digestion and by DNA immuno-precipitation. T2DM subjects presented higher PAR levels than controls. In T2DM individuals, increased PAR levels were significantly associated with higher HbA1c levels and the accumulation of the de-methylation intermediates 5hmC and 5fC in the genome. In addition, T2DM patients with higher PAR levels showed reduced methylation with increased 5hmC and 5fC levels in specific SOCS3 sites, up-regulated SOCS3 expression compared to both T2DM subjects with low PAR levels and controls. CONCLUSIONS: This study demonstrates the activation of PARylation processes in patients with T2DM, particularly in those with poor glycaemic control. PARylation is linked to dysregulation of DNA methylation pattern via activation of the DNA de-methylation cascade and may be at the basis of the differential gene expression observed in presence of diabetes.


Assuntos
Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Epigênese Genética/genética , Poli ADP Ribosilação/genética , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Geroscience ; 43(3): 1283-1302, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33870444

RESUMO

Ageing leaves characteristic traces in the DNA methylation make-up of the genome. However, the importance of DNA methylation in ageing remains unclear. The study of subtelomeric regions could give promising insights into this issue. Previously reported associations between susceptibility to age-related diseases and epigenetic instability at subtelomeres suggest that the DNA methylation profile of subtelomeres undergoes remodelling during ageing. In the present work, this hypothesis has been tested in the context of the European large-scale project MARK-AGE. In this cross-sectional study, we profiled the DNA methylation of chromosomes 5 and 21 subtelomeres, in more than 2000 age-stratified women and men recruited in eight European countries. The study included individuals from the general population as well as the offspring of nonagenarians and Down syndrome subjects, who served as putative models of delayed and accelerated ageing, respectively. Significant linear changes of subtelomeric DNA methylation with increasing age were detected in the general population, indicating that subtelomeric DNA methylation changes are typical signs of ageing. Data also show that, compared to the general population, the dynamics of age-related DNA methylation changes are attenuated in the offspring of centenarian, while they accelerate in Down syndrome individuals. This result suggests that subtelomeric DNA methylation changes reflect the rate of ageing progression. We next attempted to trace the age-related changes of subtelomeric methylation back to the influence of diverse variables associated with methylation variations in the population, including demographics, dietary/health habits and clinical parameters. Results indicate that the effects of age on subtelomeric DNA methylation are mostly independent of all other variables evaluated.


Assuntos
Envelhecimento , Metilação de DNA , Idoso de 80 Anos ou mais , Envelhecimento/genética , Células Sanguíneas , Estudos Transversais , Europa (Continente) , Feminino , Humanos , Masculino
13.
Cells ; 10(3)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803196

RESUMO

Bovine intramammary infections are common diseases affecting dairy cattle worldwide and represent a major focus of veterinary research due to financial losses and food safety concerns. The identification of new biomarkers of intramammary infection, useful for monitoring the health of dairy cows and wellness verification, represents a key advancement having potential beneficial effects on public health. In vitro experiments using bovine peripheral blood mononuclear cells (PBMC), stimulated with the bacterial endotoxin lipopolysaccharide (LPS) enabled a flow cytometric assay in order to evaluate in vivo poly-ADP-ribose (PAR) levels. Results showed a significant increase of PAR after 1 h of treatment, which is consistent with the involvement of PARP activity in the inflammatory response. This study investigated PARP-1 activation in leukocyte subpopulations from bovine milk samples during udder infection. A flow cytometric assay was, therefore, performed to evaluate the PAR content in milk leukocyte subsets of cows with and without intramammary infection (IMI). Results showed that milk lymphocytes and macrophages isolated from cows with IMI had a significant increase of PAR content compared to uninfected samples. These results suggest mastitis as a new model for the study of the role of PARP in zoonotic inflammatory diseases, opening a new perspective to the "One Health" approach.


Assuntos
Doenças dos Bovinos/sangue , Doenças dos Bovinos/microbiologia , Glândulas Mamárias Animais/enzimologia , Glândulas Mamárias Animais/microbiologia , Poli Adenosina Difosfato Ribose/sangue , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Biomarcadores/sangue , Bovinos , Ativação Enzimática , Feminino , Citometria de Fluxo , Leucócitos Mononucleares , Lipopolissacarídeos , Glândulas Mamárias Animais/patologia , Leite/microbiologia
14.
Front Psychol ; 11: 1767, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849047

RESUMO

Many studies have consistently demonstrated an epigenetic link between environmental stimuli and physiological as well as cognitive responses. Epigenetic mechanisms represent a way to regulate gene activity in real time without modifying the DNA sequence, thus allowing the genome to adapt its functions to changing environmental contexts. Factors such as lifestyle, behavior, and the practice of sitting and moving mindful activities have been shown to be important means of environmental enrichment. Such practices, which include mindfulness meditation, Vipassana, Yoga, Tai Chi, and Quadrato Motor Training, have been reported to positively impact well-being. In fact, they can be considered emotional and attentional regulatory activities, which, by inducing a state of greater inner silence, allow the development of increased self-awareness. Inner silence can therefore be considered a powerful tool to counteract the negative effects of overabundant environmental noise, thanks to its power to relieve stress-related symptoms. Since all these positive outcomes rely on physiological and biochemical activities, the molecular and epigenetic mechanisms influenced by different mindful practices have recently started to be investigated. Here, we review some of the findings that could allow us to uncover the mechanisms by which specific practices influence well-being.

15.
FEBS J ; 287(6): 1155-1175, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31599112

RESUMO

The 'instructive model' of aberrant DNA methylation in human tumors is based on the observation that CpG islands prone to hypermethylation in cancers are embedded in chromatin enriched in H3K27me3 in human embryonic stem cells (hESC). Recent studies also link methylation of CpG islands to the methylation status of H3K4, where H3K4me3 is inversely correlated with DNA methylation. To provide insight into these conflicting findings, we generated DNA methylation profiles for acute myeloid leukemia samples from patients and leukemic cell lines and integrated them with publicly available ChIp-seq data, containing H3K4me3 and H3K27me3 CpG island occupation in hESC, or hematopoietic stem or progenitor cells (hHSC/MPP). Hypermethylated CpG islands in AML samples displayed H3K27me3 enrichments in hESC and hHSC/MPP; however, ChIp analysis of specific hypermethylated CpG islands revealed a significant reduction in H3K4me3 signal with a concomitant increase in H3K4me0 levels as opposed to a nonsignificant increase in H3K27me3 marks. The integration of AML DNA methylation profiles with the ChIp-seq data in hESC and hHSC/MPP also led to the identification of Iroquois homeobox 2 (IRX2) as a previously unknown factor promoting differentiation of leukemic cells. Our results indicate that in contrast to the 'instructive model', H3K4me3 levels are strongly associated with DNA methylation patterns in AML and have a role in the regulation of critical genes, such as the putative tumor suppressor IRX2.


Assuntos
Metilação de DNA , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Linhagem Celular Tumoral , Metilação de DNA/genética , Proteínas de Homeodomínio/genética , Humanos , Fatores de Transcrição/genética
16.
Nutrients ; 11(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817660

RESUMO

Alu hypomethylation promotes genomic instability and is associated with aging and age-related diseases. Dietary factors affect global DNA methylation, leading to changes in genomic stability and gene expression with an impact on longevity and the risk of disease. This preliminary study aims to investigate the relationship between nutritional factors, such as circulating trace elements, lipids and antioxidants, and Alu methylation in elderly subjects and offspring of healthy nonagenarians. Alu DNA methylation was analyzed in sixty RASIG (randomly recruited age-stratified individuals from the general population) and thirty-two GO (GeHA offspring) enrolled in Italy in the framework of the MARK-AGE project. Factor analysis revealed a different clustering between Alu CpG1 and the other CpG sites. RASIG over 65 years showed lower Alu CpG1 methylation than those of GO subjects in the same age class. Moreover, Alu CpG1 methylation was associated with fruit and whole-grain bread consumption, LDL2-Cholesterol and plasma copper. The preserved Alu methylation status in GO, suggests Alu epigenetic changes as a potential marker of aging. Our preliminary investigation shows that Alu methylation may be affected by food rich in fibers and antioxidants, or circulating LDL subfractions and plasma copper.


Assuntos
Envelhecimento/genética , Elementos Alu , Metilação de DNA , Nutrientes/sangue , Adulto , Idoso , Envelhecimento/sangue , Antioxidantes/análise , Ilhas de CpG , Dieta , Feminino , Voluntários Saudáveis , Humanos , Itália , Lipoproteínas/sangue , Lipoproteínas/genética , Longevidade/genética , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Oligoelementos/sangue
17.
Sci Rep ; 9(1): 17034, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745152

RESUMO

The cannabinoid receptor type 2 (CB2) is the peripheral receptor for cannabinoids, involved in the homeostatic control of several physiological functions. Male mitotic germ cells express a high level of CB2, whose activation promotes their differentiation in both in vitro and in vivo experiments, controlling the correct progression of spermatogenesis. However, it remains elusive if CB2 activation in spermatogonia could affect reproductive success in terms of fertility and healthy pregnancy outcomes. In this study, we explored the effects of male CB2 activation on sperm number and quality and its influence on next generation health. We show that exposure of male mice to JWH-133, a selective CB2 agonist, decreased sperm count, impaired placental development and reduced offspring growth. These defects were associated with altered DNA methylation/hydroxymethylation levels at imprinted genes in sperm and conserved in placenta. Our findings reveal that paternal selective activation of CB2 alters the sperm epigenome and compromises offspring growth. This study demonstrates, for the first time, a new role of CB2 signaling in male gametes in causing epigenetic alterations that can be transmitted to the next generation by sperm, highlighting potential risks induced by recreational cannabinoid exposure.


Assuntos
Canabinoides/farmacologia , Cannabis/efeitos adversos , Desenvolvimento Embrionário/efeitos dos fármacos , Placentação/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo , Espermatogênese/efeitos dos fármacos , Animais , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Feminino , Masculino , Camundongos , Placenta/embriologia , Gravidez , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/genética , Contagem de Espermatozoides , Espermatogônias/metabolismo , Espermatozoides/metabolismo
18.
Front Oncol ; 9: 198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001470

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer caused by the deregulation of key T-cell developmental pathways, including Notch signaling. Aberrant Notch signaling in T-ALL occurs by NOTCH1 gain-of-function mutations and by NOTCH3 overexpression. Although NOTCH3 is assumed as a Notch1 target, machinery driving its transcription in T-ALL is undefined in leukemia subsets lacking Notch1 activation. Here, we found that the binding of the intracellular Notch3 domain, as well as of the activated Notch1 fragment, to the NOTCH3 gene locus led to the recruitment of the H3K27 modifiers JMJD3 and p300, and it was required to preserve transcriptional permissive/active H3K27 marks and to sustain NOTCH3 gene expression levels. Consistently, pharmacological inhibition of JMJD3 by GSKJ4 treatment or of p300 by A-485 decreased the levels of expression of NOTCH3, NOTCH1 and of the Notch target genes DELTEX1 and c-Myc and abrogated cell viability in both Notch1- and Notch3-dependent T-cell contexts. Notably, re-introduction of exogenous Notch1, Notch3 as well as c-Myc partially rescued cells from anti-growth effects induced by either treatment. Overall our findings indicate JMJD3 and p300 as general Notch1 and Notch3 signaling co-activators in T-ALL and suggest further investigation on the potential therapeutic anti-leukemic efficacy of their enzymatic inhibition in Notch/c-Myc axis-related cancers and diseases.

19.
J Gerontol A Biol Sci Med Sci ; 73(6): 737-744, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29069286

RESUMO

Down syndrome (DS) is caused by the presence of part or an entire extra copy of chromosome 21, a phenomenon that can cause a wide spectrum of clinically defined phenotypes of the disease. Most of the clinical signs of DS are typical of the aging process including dysregulation of immune system. Beyond the causative genetic defect, DS persons display epigenetic alterations, particularly aberrant DNA methylation patterns that can contribute to the heterogeneity of the disease. In the present work, we investigated the levels of 5-hydroxymethylcytosine and of the Ten-eleven translocation dioxygenase enzymes, which are involved in DNA demethylation processes and are often deregulated in pathological conditions as well as in aging. Analyses were carried out on peripheral blood mononuclear cells of DS volunteers enrolled in the context of the MARK-AGE study, a large-scale cross-sectional population study with subjects representing the general population in eight European countries. We observed a decrease in 5-hydroxymethylcytosine, TET1, and other components of the DNA methylation/demethylation machinery in DS subjects, indicating that aberrant DNA methylation patterns in DS, which may have consequences on the transcriptional status of immune cells, may be due to a global disturbance of methylation control in DS.


Assuntos
Envelhecimento/sangue , Envelhecimento/genética , Metilação de DNA , Síndrome de Down/sangue , Síndrome de Down/genética , Leucócitos Mononucleares/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/sangue , Adulto , Idoso , Estudos Transversais , Epigênese Genética , Europa (Continente) , Feminino , Humanos , Immunoblotting , Itália , Masculino , Pessoa de Meia-Idade , Oxigenases de Função Mista/sangue , Proteínas Proto-Oncogênicas/sangue , RNA Mensageiro/sangue
20.
J Gerontol A Biol Sci Med Sci ; 73(6): 745-753, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29045571

RESUMO

Metallothionein (MT) family are cysteine-rich proteins that regulate zinc (Zn) homeostasis and protect against oxidative damage. Studies in transgenic mice have shown that MT favorably influence longevity, although their role in human aging is not completely understood. Within the European multicenter study MARK-AGE, we analyzed MT induction after Zn treatment in peripheral blood mononuclear cells (PBMCs) and its relation with redox biomarkers in 2,936 age-stratified subjects (35-75 years) including the general population (RASIG), centenarian offspring (GO), and their spouses (SGO). We found that the lymphocyte capability to induce MT in response to Zn is not affected by aging. However, GO participants showed lower Zn-induced MT and increased basal expression of MT1A, MT1X, and ZnT-1 genes than RASIG subjects. Moreover, Zn-induced MT levels were found to be inversely related with oxidative stress markers (plasma protein carbonyls, 3-nitrotyrosine, and malondialdehyde) in the whole population, but not in GO subjects. In conclusion, our results support the hypothesis that the response to Zn is attenuated in PBMCs of centenarian offspring compared to the general population as a consequence of a tighter control of Zn homeostasis which is likely to provide them constant protection against stress stimuli over the whole lifespan.


Assuntos
Biomarcadores/metabolismo , Leucócitos Mononucleares/metabolismo , Metalotioneína/metabolismo , Zinco/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas de Cultura de Células , Estudos Transversais , Europa (Continente) , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...