Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Eur J Transl Myol ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305708

RESUMO

During the 2023 Padua Days on Muscle and Mobility Medicine the 2024 meeting was scheduled from 28 February to 2 March 2024 (2024Pdm3). During autumn 2023 the program was expanded with Scientific Sessions which will take place over five days (in 2024 this includes February 29), starting from the afternoon of 27 February 2024 in the Conference Rooms of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. As per consolidated tradition, the second day will take place in Padua, for the occasion in the Sala San Luca of the Monastery of Santa Giustina in Prato della Valle, Padua, Italy. Confirming the attractiveness of the Padua Days on Muscle and Mobility Medicine, over 100 titles were accepted until 15 December 2023 (many more than expected), forcing the organization of parallel sessions on both 1 and 2 March 2024. The five days will include lectures and oral presentations of scientists and clinicians from Argentina, Austria, Belgium, Brazil, Bulgaria, Canada, Denmark, Egypt, France, Germany, Iceland, Ireland, Italy, Romania, Russia, Slovenia, Switzerland, UK and USA. Only Australia, China, India and Japan are missing from this edition. But we are confident that authors from those countries who publish articles in the PAGEpress: European Journal of Translational Myology (EJTM: 2022 ESCI Clarivate's Impact Factor: 2.2; SCOPUS Cite Score: 3.2) will decide to join us in the coming years. Together with the program established by 31 January 2024, the abstracts will circulate during the meeting only in the electronic version of the EJTM Issue 34 (1) 2024. See you soon in person at the Hotel Petrarca in Montegrotto Terme, Padua, for the inauguration scheduled the afternoon of 27 February 2024 or on-line for free via Zoom. Send us your email address if you are not traditional participants listed in Pdm3 and EJTM address books.

2.
Neurol Res ; 46(2): 139-156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043115

RESUMO

Prof. Ugo Carraro reached 80 years of age on 23 February 2023, and we wish to celebrate him and his work by reviewing his lifetime of scientific achievements in Translational Myology. Currently, he is a Senior Scholar with the University of Padova, Italy, where, as a tenured faculty member, he founded the Interdepartmental Research Center of Myology. Prof. Carraro, a pioneer in skeletal muscle research, is a world-class expert in structural and molecular investigations of skeletal muscle biology, physiology, pathology, and care. An authority in bidimensional gel electrophoresis for myosin light chains, he was the first to separate mammalian muscle myosin heavy chain isoforms by SDS-gel electrophoresis. He has demonstrated that long-term denervated muscle can survive denervation by myofiber regeneration, and shown that an athletic lifestyle has beneficial impacts on muscle reinnervation. He has utilized his expertise in translational myology to develop and validate rehabilitative treatments for denervated and ageing skeletal muscle. He has authored more than 160 PubMed listed papers and numerous scholarly books, including his recent autobiography. Prof. Carraro founded and serves as Editor-in-Chief of the European Journal of Translational Myology and Mobility Medicine. He has organized more than 40 Padua Muscle Days Meetings and continues this, encouraging students and young scientists to participate. As he dreams endlessly, he is currently validating non-invasive analyses on saliva, a promising approach that will allow increased frequency sampling to analyze systemic factors during the transient effects of training and rehabilitation by his proposed Full-Body in- Bed Gym for bed-ridden elderly.


Assuntos
Pesquisa Translacional Biomédica , Idoso de 80 Anos ou mais , Humanos , Masculino , Músculo Esquelético
3.
Eur J Transl Myol ; 33(4)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38058287

RESUMO

A well-synchronized circadian system is a manifestation of an individual's health. A gradual weakening of the circadian timing function characterizes aging. Regular exercise has been suggested as a modality to improve many detrimental changes associated with aging. Therefore, we aim to examine the benefits and risks of lifelong endurance exercise on age-dependent changes in the circadian time-keeping function, the performance of the muscular system and health status. The study protocol has a comparative cross-sectional design, including groups of senior (65 to 75 years old, n=16) and young (20-30 years old, n=16) endurance runners and triathletes. Age-matched groups of young and elderly sedentary men are included as controls. The circadian function is evaluated mainly by measurement of urinary 6-sulphatoxymelatonin, a metabolite of the hormone melatonin shown to participate in the modulation of sleep cycles. The 6-sulphatoxymelatonin will be assessed in urine samples collected upon awakening in the morning and in the late evening, as a marker of melatonin production. In addition, sleep/activity rhythms and sleep quality will be measured by wrist actigraphy. Performance of the muscular system will be assessed by examination of muscular strength and quantifying of gene expression in the skeletal muscle tissue samples. Health status and age-induced reduction in immune function are to be analysed via the balance of pro- and anti-inflammatory immune markers in the plasma and skeletal muscle, body composition, bone density and physical fitness.

4.
Eur J Transl Myol ; 33(4)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38112609

RESUMO

At the end of the 2023 Padua Days of Muscle and Mobility Medicine the next year's meeting was scheduled from 27 February to 2 March 2024 (2024Pdm3). During the summer and autumn the program was confirmed with Scientific Sessions that will take place over five days, starting in the afternoon of February 27, 2024 at the Conference Room of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. As usual, the next day will be spent in Padua, in this occasion at the San Luca Hall of the Santa Giustina monastery in Prato della Valle, Padua, Italy. Collected during Autumn 2023, many more titles and abstracts than expected were submitted, forcing the organization of parallel sessions both on March 1 and March 2 2024 confirming attractiveness of the 2024 Pdm3. The five days will include oral presentations of scientists and clinicians from Argentina, Austria, Belgium, Brazil, Canada, Denmark, Egypt, France, Germany, Iceland, Ireland, Italy, Romania, Russia, Slovenia, Switzerland, UK and USA. Together with the preliminary Program at December 1, 2023, the early submitted Abstracts is e-published in this Issue 33 (4) 2023 of the European Journal of Translational Myology (EJTM). You are invited to join, submitting your Last Minute Abstracts to ugo.carraro@unipd.it by February 1, 2024. Furthermore, with the more generous deadline of May 20, 2024, submit please "Communications" to the European Journal of Translational Myology (Clarivate's ESCI Impact factor 2.2; SCOPUS Cite Score: 3.2). See you soon at the Hotel Petrarca in Montegrotto Terme, Padua, on February 27, 2024, but the complete program can be followed from home via zoom connection.

5.
Eur J Transl Myol ; 33(2)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37114363

RESUMO

The 2023 Padua Days of Muscle and Mobility Medicine (Pdm3) were held from March 29th to April 1st, 2023. Most of the abstracts were published electronically in the European Journal of Translational Myology (EJTM) 33 (1) 2023. Here we report the complete book of abstracts that confirms the interest of more than 150 scientists and clinicians from Austria, Bulgaria, Canada, Denmark, France, Georgia, Germany, Iceland, Ireland, Italy, Mongolia, Norway, Russia, Slovakia, Slovenia, Spain, Switzerland, The Netherlands and USA to gather to the Hotel Petrarca of Thermae of Euganean Hills, Padua, Italy for contributing and attending the Pdm3 (https://www.youtube.com/watch?v=zC02D4uPWRg). The 2023 Pdm3 started March 29th in the historic Aula Guariento of thePadua Galilean Academy of Letters, Arts and Sciences with the Lecture of Prof. Carlo Reggiani and ended in the late afternoon with the Lecture of Professor Terje Lømo after introductory words of Professor Stefano Schiaffino. The program followed in the Hotel Petrarca Conferenece Halls from March 30 to April 1, 2023. The extended topic interests of specialists in basic myology sciences and clinicians, collected under the umbrella neologism of Mobility Medicine, is stressed also by expansion of Sections of the EJTM Editorial Board (https://www.pagepressjournals.org/index.php/bam/board). We hope that Speakers of the 2023 Pdm3 and readers of EJTM will submit "EJTM Communications" to the European Journal of Translational Myology (PAGEpress, Pavia, Italy) by May 31, 2023 and/or invited review and original articles for the 2023 special issue: "Pdm3" of Diagnostics, MDPI, Basel, Switzerland due September 30, 2023.

6.
Nat Commun ; 14(1): 1849, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012289

RESUMO

Cachexia is a debilitating wasting syndrome and highly prevalent comorbidity in cancer patients. It manifests especially with energy and mitochondrial metabolism aberrations that promote tissue wasting. We recently identified nicotinamide adenine dinucleotide (NAD+) loss to associate with muscle mitochondrial dysfunction in cancer hosts. In this study we confirm that depletion of NAD+ and downregulation of Nrk2, an NAD+ biosynthetic enzyme, are common features of severe cachexia in different mouse models. Testing NAD+ repletion therapy in cachectic mice reveals that NAD+ precursor, vitamin B3 niacin, efficiently corrects tissue NAD+ levels, improves mitochondrial metabolism and ameliorates cancer- and chemotherapy-induced cachexia. In a clinical setting, we show that muscle NRK2 is downregulated in cancer patients. The low expression of NRK2 correlates with metabolic abnormalities underscoring the significance of NAD+ in the pathophysiology of human cancer cachexia. Overall, our results propose NAD+ metabolism as a therapy target for cachectic cancer patients.


Assuntos
Neoplasias , Niacina , Humanos , Camundongos , Animais , Niacina/farmacologia , Niacina/uso terapêutico , Niacina/metabolismo , NAD/metabolismo , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Niacinamida/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Músculo Esquelético/metabolismo
7.
Eur J Transl Myol ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856584

RESUMO

The 2023 Padua Days of Muscle and Mobility Medicine (Pdm3) are scheduled from March 29th to April 1st, 2023. The abstracts collected during autumn and early winter of 2022 were e- published in the issue 33 (1) 2023 of the European Journal of Translational Myology (EJTM). Now the last-minute abstracts are reported here (100 Oral presentations are listed in the final Program). All together they confirm the interest of very different international specialists, filling the four days of 2023Pdm3. Indeed, scientists and clinicians from Austria, Bulgaria, Canada, Denmark, France, Georgia, Germany, Iceland, Ireland, Italy, Mongolia, Norway, Russia, Slovakia, Slovenia, Spain, Switzerland, The Netherlands and USA will gather to the Hotel Petrarca of Thermae of Euganean Hills, Padua, Italy. The apparent heterogeneity of the specialists, collectively raccolti under the umbrella of the Mobility Medicine neologism is stressed by the need to extend the Sections of the 2023 Editorial Borad of EJTM also here reported. We hope that Speakers of the 2023 Pdm3 and readers of EJTM will submit "Communications" to the European Journal of Translational Myology by May 20, 2023 and/or to the 2023 Special Issue: "Pdm3" of the Journal Diagnostics, MDPI, Basel, Switzerland with deadline September 30, 2023. See you soon at the Hotel Petrarca of Montegrotto Terme, Padua, Italy. For a promo of the 2023 Pdm3 link to: https://www.youtube.com/watch?v=zC02D4uPWRg.

8.
Biology (Basel) ; 12(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979123

RESUMO

Human skeletal muscle atrophy and a disproportionate force loss occur within a few days of unloading in space and on Earth, but the underlying mechanisms are not fully understood. Disruption of neuromuscular junction homeostasis has been proposed as one of the possible causes. Here, we investigated the potential mechanisms involved in this neuromuscular disruption induced by a 10-day unilateral lower limb suspension (ULLS) in humans. Specifically, we investigated hemichannels' upregulation, neuromuscular junction and axonal damage, neurotrophins' receptor downregulation and inflammatory transcriptional signatures. Biomarkers were evaluated at local and systemic levels. At the sarcolemmal level, changes were found to be associated with an increased expression of connexin 43 and pannexin-1. Upregulation of the inflammatory transcripts revealed by deep transcriptomics was found after 10 days of ULLS. The destabilisation of the neuromuscular junction was not accompanied by changes in the secretion of the brain-derived neurotrophic factor and neurotrophin-4, while their receptor, BDNF/NT growth factors receptor (TrkB), decreased. Furthermore, at 5 days of ULLS, there was already a significant upregulation of the serum neurofilament light chain concentration, an established clinical biomarker of axonal injury. At 10 days of ULLS, other biomarkers of early denervation processes appeared. Hence, short periods of muscle unloading induce sarcolemmal hemichannels upregulation, inflammatory transcripts upregulation, neuromuscular junction instability and axonal damage.

9.
J Cachexia Sarcopenia Muscle ; 14(2): 730-744, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36772862

RESUMO

Ageing is accompanied by an inexorable loss of muscle mass and functionality and represents a major risk factor for numerous diseases such as cancer, diabetes and cardiovascular and pulmonary diseases. This progressive loss of muscle mass and function may also result in the insurgence of a clinical syndrome termed sarcopenia, exacerbated by inactivity and disease. Sarcopenia and muscle weakness yield the risk of falls and injuries, heavily impacting on health and social costs. Thus, screening, monitoring and prevention of conditions inducing muscle wasting and weakness are essential to improve life quality in the ageing modern society. To this aim, the reliability of easily accessible and non-invasive blood-derived biomarkers is being evaluated. C-terminal agrin fragment (CAF) has been widely investigated as a neuromuscular junction (NMJ)-related biomarker of muscle dysfunction. This narrative review summarizes and critically discusses, for the first time, the studies measuring CAF concentration in young and older, healthy and diseased individuals, cross-sectionally and in response to inactivity and physical exercise, providing possible explanations behind the discrepancies observed in the literature. To identify the studies investigating CAF in the above-mentioned conditions, all the publications found in PubMed, written in English and measuring this biomarker in blood from 2013 (when CAF was firstly measured in human serum) to 2022 were included in this review. CAF increases with age and in sarcopenic individuals when compared with age-matched, non-sarcopenic peers. In addition, CAF was found to be higher than controls in other muscle wasting conditions, such as diabetes, COPD, chronic heart failure and stroke, and in pancreatic and colorectal cancer cachectic patients. As agrin is also expressed in kidney glomeruli, chronic kidney disease and transplantation were shown to have a profound impact on CAF independently from muscle wasting. CAF concentration raises following inactivity and seems to be lowered or maintained by exercise training. Finally, CAF was reported to be cross-sectionally correlated to appendicular lean mass, handgrip and gait speed; whether longitudinal changes in CAF are associated with those in muscle mass or performance following physical exercise is still controversial. CAF seems a reliable marker to assess muscle wasting in ageing and disease, also correlating with measurements of appendicular lean mass and muscle function. Future research should aim at enlarging sample size and accurately reporting the medical history of each patient, to normalize for any condition, including chronic kidney disease, that may influence the circulating concentration of this biomarker.


Assuntos
Insuficiência Renal Crônica , Sarcopenia , Humanos , Sarcopenia/diagnóstico , Sarcopenia/etiologia , Agrina , Força da Mão/fisiologia , Reprodutibilidade dos Testes , Atrofia Muscular , Biomarcadores , Músculos
10.
Eur J Transl Myol ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36786151

RESUMO

At the end of the 2022 Padua Days of Muscle and Mobility Medicine (Pdm3) the next year's meeting was scheduled from 29 March to 1 April 2023. Despite the worsening evolution of the crisis in Eastern Europe, the program was confirmed in autumn 2022 with Scientific Sessions that will take place over three full days in the Aula Guariento of the Galileian Academy of Arts, Letters and Sciences of Padua (March 29, 2023) and then at the Conference Room of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. Collected during autumn and early winter, many titles and abstracts where submitted (about 100 Oral presentations are listed in the preliminary Program by January 31, 2023) confirming attractiveness of the 2023 Pdm3. The four days will include oral presentations of scientists and clinicians from Austria, Bulgaria, Canada, Denmark, France, Georgia, Germany, Iceland, Ireland, Italy, Mongolia, Norway, Russia, Slovakia, Slovenia, Spain, Switzerland, The Netherlands and USA. Together with the preliminary Program at January 31, 2023, the Collection of Abstracts is e-published in this Issue 33 (1) 2023 of the European Journal of Translational Myology (EJTM). You are invited to join, submitting your Last Minute Abstracts to ugo.carraro@unipd.it by March 15, 2023. Furthermore, with the more generous deadline of May 20, 2023, submit please "Communications" to the European Journal of Translational Myology (SCOPUS Cite Score Tracker 2023: 3.2 by January 5, 2023) and/or to the 2023 Special Issue: "Pdm3" of the Journal Diagnostics, MDPI, Basel (I.F. near to 4.0) with deadline September 30, 2023. Both journals will provide discounts to the first accepted typescripts. See you soon at the Hotel Petrarca of Montegrotto Terme, Padua, Italy. For a promo of the 2023 Pdm3 link to: https://www.youtube.com/watch?v=zC02D4uPWRg.

11.
J Cachexia Sarcopenia Muscle ; 14(2): 794-804, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708273

RESUMO

BACKGROUND: Ageing is accompanied by a progressive loss of skeletal muscle mass and strength, potentially determining the insurgence of sarcopenia. Evidence suggests that motoneuron and neuromuscular junction (NMJ) degeneration contribute to sarcopenia pathogenesis. Seeking for strategies able to slow down sarcopenia insurgence and progression, we investigated whether a 2-year mixed-model training involving aerobic, strength and balance exercises would be effective for improving or preserving motoneuronal health and NMJ stability, together with muscle mass, strength and functionality in an old, sarcopenic population. METHODS: Forty-five sarcopenic elderly (34 females; 11 males) with low dual-energy X-ray absorptiometry (DXA) lean mass and Short Physical Performance Battery (SPPB) score <9 were randomly assigned to either a control group [Healthy Aging Lifestyle Education (HALE), n = 21] or an intervention group [MultiComponent Intervention (MCI), n = 24]. MCI trained three times per week for 2 years with a mix of aerobic, strength and balance exercises matched with nutritional advice. Before and after the intervention, ultrasound scans of the vastus lateralis (VL), SPPB and a blood sample were obtained. VL architecture [pennation angle (PA) and fascicle length (Lf)] and cross-sectional area (CSA) were measured. As biomarkers of neuronal health and NMJ stability status, neurofilament light chain (NfL) and C-terminal agrin fragment (CAF) concentrations were measured in serum. Differences in ultrasound parameters, NfL and CAF concentration and physical performance between baseline and follow-up were tested with mixed ANOVA or Wilcoxon test. The relationship between changes in physical performance and NfL or CAF concentration was assessed through correlation analyses. RESULTS: At follow-up, MCI showed preserved VL architecture (PA, Lf) despite a reduced CSA (-8.4%, P < 0.001), accompanied by maintained CAF concentration and ameliorated overall SPPB performance (P = 0.007). Conversely, HALE showed 12.7% decrease in muscle CSA (P < 0.001), together with 5.1% and 5.5% reduction in PA and Lf (P < 0.001 and P = 0.001, respectively), and a 6.2% increase in CAF (P = 0.009) but improved SPPB balance score (P = 0.007). NfL concentration did not change in either group. In the population, negative correlations between changes in CAF concentration and SPPB total score were found (P = 0.047), whereas no correlation between NfL and SPPB variations was observed. CONCLUSIONS: The present findings suggest that our 2-year mixed aerobic, strength and balance training seemed effective for preventing the age and sarcopenia-related increases in CAF concentration, preserving NMJ stability as well as muscle structure (PA and Lf) and improving physical performance in sarcopenic older individuals.


Assuntos
Sarcopenia , Masculino , Feminino , Humanos , Idoso , Sarcopenia/epidemiologia , Envelhecimento/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/patologia , Absorciometria de Fóton
12.
J Cachexia Sarcopenia Muscle ; 14(1): 439-451, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36517414

RESUMO

BACKGROUND: Inactivity and unloading induce skeletal muscle atrophy, loss of strength and detrimental metabolic effects. Bed rest is a model to study the impact of inactivity on the musculoskeletal system. It not only provides information for bed-ridden patients care, but it is also a ground-based spaceflight analogue used to mimic the challenges of long space missions for the human body. In both cases, it would be desirable to develop a panel of biomarkers to monitor muscle atrophy in a minimally invasive way at point of care to limit the onset of muscle loss in a personalized fashion. METHODS: We applied mass spectrometry-based proteomics to measure plasma protein abundance changes in response to 10 days of bed rest in 10 young males. To validate the correlation between muscle atrophy and the significant hits emerging from our study, we analysed in parallel, with the same pipeline, a cohort of cancer patients with or without cachexia and age-matched controls. Our analysis resulted in the quantification of over 500 proteins. RESULTS: Unloading affected plasma concentration of proteins of the complement cascade, lipid carriers and proteins derived from tissue leakage. Among the latter, teneurin-4 increased 1.6-fold in plasma at bed rest day 10 (BR10) compared with BR0 (6.E9 vs. 4.3E9, P = 0.02) and decreased to 0.6-fold the initial abundance after 2 days of recovery at normal daily activity (R + 2, 2.7E9, P = 3.3E-4); the extracellular matrix protein lumican was decreased to 0.7-fold (1.2E9 vs. 8.5E8, P = 1.5E-4) at BR10 and remained as low at R + 2. We identified six proteins distinguishing subjects developing unloading-mediated muscle atrophy (decrease of >4% of quadriceps cross-sectional area) from those largely maintaining their initial muscle mass. Among them, transthyretin, a thyroid hormone-binding protein, was significantly less abundant at BR10 in the plasma of subjects with muscle atrophy compared with those with no atrophy (1.6E10 vs. 2.6E10, P = 0.001). Haptoglobin-related protein was also significantly reduced in the serum of cancer patients with cachexia compared with that of controls. CONCLUSIONS: Our findings highlight a combination or proteomic changes that can be explored as potential biomarkers of muscle atrophy occurring under different conditions. The panel of significant proteomic differences distinguishing atrophy-prone and atrophy-resistant subjects after 10 days of bed rest need to be tested in a larger cohort to validate their potential to predict inactivity-triggered muscle loss in humans.


Assuntos
Repouso em Cama , Proteoma , Masculino , Humanos , Repouso em Cama/efeitos adversos , Voluntários Saudáveis , Caquexia , Proteômica , Atrofia Muscular/etiologia
13.
Eur J Transl Myol ; 32(4)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511885

RESUMO

The winter of 2022 approaches with the need to finalize our plans for next year. This is urgent for the 2023 Meeting of the Padua Days of Muscle and Mobility Medicine (Pdm3) to be held March 29th to April 1st, 2023 at the Hotel Petrarca in the Thermae of Euganean Hills (Padua), Italy. A preliminary Pdm3 Program is almost ready with sessions, organzers and keynote speakers, but ther is still rooms for many interesting and interested young speakers. Some of the Pdm3 sessions dedicated to molecular and cellular myology are organized by old Pdm3 Friends, but there will also be interesting new entries, including those for Rehabilitation Sessions. No doubt that 2023 Pdm3 will attract old friends, but topics of a few sessions are at the frontiers of Translational Myology and new entries are most warmly acknowledged. This is true for both basic myology research, which include beside traditional MiRNA the new entry of the LNC-RNA and the "dark side of the genome". As to rehabilitation topics, beside the old friends of the "LBI workshop on muscle rehabilitation - from mouse to elderly", new entries are sessions on Muscle Fascia, Muscle Rehabilitation in Dentistry (that will organize also a Practical Course) and the session on "European Medical Thermalism and FEMTEC" that will also offer a practical Course. We hope that by January 20th, 2023 many old and new friends will send their abstracts to fill an half-empty program and then by May 1st, 2023 they submit Communications to EJTM that deserve them to increase the 2023 EJTM Impact Factor.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36293774

RESUMO

Regular physical activity, recommended by the WHO, is crucial in maintaining a good physical fitness level and health status and slows down the effects of aging. However, there is a lack of knowledge of whether lifelong endurance running, with a volume and frequency above the WHO limits, still brings the same benefits, or several negative effects too. The present study aims to examine the protentional benefits and risks of lifelong endurance running training in Master male athletes, as this level of physical activity is above the WHO recommendations. Within the study, four main groups of participants will be included: (1) endurance-trained master athletes, (2) endurance-trained young athletes, (3) young sedentary adults, and (4) elderly sedentary. Both groups of athletes are strictly marathon runners, who are still actively running. The broad spectrum of the diagnostic tests, from the questionnaires, physical fitness testing, and blood sampling to muscle biopsy, will be performed to obtain the possibility of complexly analyzing the effects of lifelong endurance physical activity on the human body and aging. Moreover, the study will try to discover and explain new relationships between endurance running and diagnostic parameters, not only within aging.


Assuntos
Resistência Física , Corrida , Adulto , Humanos , Masculino , Idoso , Resistência Física/fisiologia , Corrida/fisiologia , Atletas , Envelhecimento/fisiologia , Aptidão Física
15.
J Physiol ; 600(21): 4731-4751, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36071599

RESUMO

Electrophysiological alterations of the neuromuscular junction (NMJ) and motor unit potential (MUP) with unloading are poorly studied. We aimed to investigate these aspects and the underlying molecular mechanisms with short-term unloading and active recovery (AR). Eleven healthy males underwent a 10-day unilateral lower limb suspension (ULLS) period, followed by 21-day AR based on resistance exercise. Quadriceps femoris (QF) cross-sectional area (CSA) and isometric maximum voluntary contraction (MVC) were evaluated. Intramuscular electromyographic recordings were obtained during 10% and 25% MVC isometric contractions from the vastus lateralis (VL). Biomarkers of NMJ molecular instability (serum c-terminal agrin fragment, CAF), axonal damage (neurofilament light chain) and denervation status were assessed from blood samples and VL biopsies. NMJ and ion channel transcriptomic profiles were investigated by RNA-sequencing. QF CSA and MVC decreased with ULLS. Increased CAF and altered NMJ transcriptome with unloading suggested the emergence of NMJ molecular instability, which was not associated with impaired NMJ transmission stability. Instead, increased MUP complexity and decreased motor unit firing rates were found after ULLS. Downregulation of ion channel gene expression was found together with increased neurofilament light chain concentration and partial denervation. The AR period restored most of these neuromuscular alterations. In conclusion, the human NMJ is destabilized at the molecular level but shows functional resilience to a 10-day unloading period at least at relatively low contraction intensities. However, MUP properties are altered by ULLS, possibly due to alterations in ion channel dynamics and initial axonal damage and denervation. These changes are fully reversed by 21 days of AR. KEY POINTS: We used integrative electrophysiological and molecular approaches to comprehensively investigate changes in neuromuscular integrity and function after a 10-day unilateral lower limb suspension (ULLS), followed by 21 days of active recovery in young healthy men, with a particular focus on neuromuscular junction (NMJ) and motor unit potential (MUP) properties alterations. After 10-day ULLS, we found significant NMJ molecular alterations in the absence of NMJ transmission stability impairment. These findings suggest that the human NMJ is functionally resilient against insults and stresses induced by short-term disuse at least at relatively low contraction intensities, at which low-threshold, slow-type motor units are recruited. Intramuscular electromyography analysis revealed that unloading caused increased MUP complexity and decreased motor unit firing rates, and these alterations could be related to the observed changes in skeletal muscle ion channel pool and initial and partial signs of fibre denervation and axonal damage. The active recovery period restored these neuromuscular changes.


Assuntos
Contração Muscular , Transcriptoma , Masculino , Humanos , Contração Muscular/fisiologia , Junção Neuromuscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Eletromiografia
16.
Eur J Transl Myol ; 32(2)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35421919

RESUMO

Despite COVID-19 outbreak, the program of the 2022 Padua Days of Muscle and Mobility Medicine (PDM3) was confirmed On-site in February from March 30 to April 2, 2022 to be held at the University of Padua Aula Magna and at Conference Hall of the Hotel Petrarca of Thermae of Euganean Hills (Padua), Italy. Over 130 abstracts, including the last-minute submissions listed below, convinced organizers to extend the program to five days. The sponsorship of the University of Florida and the willingness of attendees to meet friends after two years of virtual conferences were the keys of success, despite concerns for current events in East Europe. Only fourteen Virtual presentations were in the final program, eight due to last-minute Coronavirus infections and six for East Europe problems. The first two days of the programincluded scientists and clinicians of the University of Florida, USA and their invitees from Canada, France, Italy, Swiden, Swiss, UK and USA. Researchers and clinicians from Austria, Belgium, France, Germany, Iceland, Ireland, Italy, Russia, Slovakia, Slovenia, UK and USA filled the program of last three days more oriented to aging and rehabilitation. The large majority of abstracts was e-published before the meeting; here are last-minute abstracts and the final program. The program of the 2023 On-site PDM3 was informally designed during the Meeting, but will be circulated during 2022 summer. Fix the dates in your agenda from Thursday March 28 to Friday March 31. For now, please, submit Communications to the European Journal of Translational Myology, PAGEpress, Pavia, Italy and Original Articles or Reviews to the Journal Diagnostics, MDPI, Basel, Swiss. Both journals will host Special PDM3 Sections and will apply 50% discount on editorial processing fees to the first 15 accepted typescripts.

17.
Diagnostics (Basel) ; 12(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35328120

RESUMO

Langerhans cells represent the first immune cells that sense the entry of external molecules and microorganisms at the epithelial level in the skin. In this pilot case-study, we evaluated Langerhans cells density and progression of epidermal atrophy in permanent spinal cord injury (SCI) patients suffering with either lower motor neuron lesions (LMNSCI) or upper motor neuron lesions (UMNSCI), both submitted to surface electrical stimulation. Skin biopsies harvested from both legs were analyzed before and after 2 years of home-based Functional Electrical Stimulation for denervated degenerating muscles (DDM) delivered at home (h-bFES) by large anatomically shaped surface electrodes placed on the skin of the anterior thigh in the cases of LMNSCI patients or by neuromuscular electrical stimulation (NMES) for innervated muscles in the cases of UMNSCI persons. Using quantitative histology, we analyzed epidermal thickness and flattening and content of Langerhans cells. Linear regression analyses show that epidermal atrophy worsens with increasing years of LMNSCI and that 2 years of skin electrostimulation reverses skin changes, producing a significant recovery of epidermis thickness, but not changes in Langerhans cells density. In UMNSCI, we did not observe any statistically significant changes of the epidermis and of its content of Langerhans cells, but while the epidermal thickness is similar to that of first year-LMNSCI, the content of Langerhans cells is almost twice, suggesting that the LMNSCI induces an early decrease of immunoprotection that lasts at least 10 years. All together, these are original clinically relevant results suggesting a possible immuno-repression in epidermis of the permanently denervated patients.

18.
Diagnostics (Basel) ; 12(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328236

RESUMO

The abdominal microsurgical flap based on the deep inferior epigastric artery perforator (DIEP) flap has become the most popular option worldwide for autologous breast reconstruction. Several authors have investigated the results of reconstructed breasts, but the literature lacks systematic reviews exploring the donor site of the abdominal wall. To fulfil our aims, a new diagnostic muscle imaging analysis was designed and implemented. This study focused on rectus abdominal muscle morphology and function in a single series of 12 consecutive patients analysed before and after breast reconstruction with a microsurgical DIEP flap. Patients were divided into two groups, namely, "ipsilateral reconstruction" and "contralateral reconstruction", depending on the side of the flap harvest and breast reconstruction, then evaluated by computed tomography (CT) scans scheduled for tumor staging, and clinically examined by a physiatrist. Numerous alterations in muscle physiology were observed due to surgical dissection of perforator vessels, and rectus muscle distress without functional impairment was a common result. Postoperatively, patients undergoing "contralateral reconstruction" appeared to exhibit fewer rectus muscle alterations. Overall, only three patients were impacted by a long-term deterioration in their quality of life. On the basis of the newly developed and implemented diagnostic approach, we concluded that DIEP microsurgical breast reconstruction is a safe procedure without major complications at the donor site, even if long-term alterations of the rectus muscle are a common finding.

19.
Eur J Transl Myol ; 32(1)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35234026

RESUMO

In 2013 we presented results showing that at the histological level lifelong increased physical activity promotes reinnervation of muscle fibers in aging muscles. Indeed, in muscle biopsies from 70-year old men with a lifelong history of high-level physical activity, we observed a considerable increase in fiber-type groupings (F-TG), almost exclusively of the slow type. Slow-type transformation by denervation-reinnervation in senior sportsmen seems to fluctuate from those with scarce fiber-type transformation and groupings to almost fully transformed muscle, going through a process in which isolated fibers co-expressing fast and slow Myosin Heavy Chains (MHCs) seems to fill the gaps. Taken together, our results suggest that, beyond the direct effects of aging on the muscle fibers, changes occurring in skeletal muscle tissue appear to be largely, although not solely, a result of sparse denervation-reinnervation. The lifelong exercise allows the body to adapt to the consequences of the age-related denervation and to preserve muscle structure and function by saving otherwise lost muscle fibers through recruitment to different, mainly slow, motor units. These beneficial effects of high-level life-long exercise on motoneurons, specifically on the slow type motoneurones that are those with higher daily activity, and on muscle fibers, serve to maintain size, structure and function of muscles, delaying the functional decline and loss of independence that are commonly seen in late aging. Several studies of independent reserchers with independent analyses confirmed and cited our 2013 results. Thus, the results we presented in our paper in 2013 seem to have held up rather well.

20.
Diagnostics (Basel) ; 11(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34679577

RESUMO

BACKGROUND: The potassium channel encoded by the ether-a-gogo-related gene 1A (erg1a) has been detected in the atrophying skeletal muscle of mice experiencing either muscle disuse or cancer cachexia and further evidenced to contribute to muscle deterioration by enhancing ubiquitin proteolysis; however, to our knowledge, ERG1A has not been reported in human skeletal muscle. METHODS AND RESULTS: Here, using immunohistochemistry, we detect ERG1A immunofluorescence in human Rectus abdominis skeletal muscle sarcolemma. Further, using single point brightness data, we report the detection of ERG1A immunofluorescence at low levels in the Rectus abdominis muscle sarcolemma of young adult humans and show that it trends toward greater levels (10.6%) in healthy aged adults. Interestingly, we detect ERG1A immunofluorescence at a statistically greater level (53.6%; p < 0.05) in the skeletal muscle of older cancer patients than in age-matched healthy adults. Importantly, using immunoblot, we reveal that lower mass ERG1A protein is 61.5% (p < 0.05) more abundant in the skeletal muscle of cachectic older adults than in healthy age-matched controls. Additionally, we report that the ERG1A protein is detected in a cultured human rhabdomyosarcoma line that may be a good in vitro model for the study of ERG1A in muscle. CONCLUSIONS: The data demonstrate that ERG1A is detected more abundantly in the atrophied skeletal muscle of cancer patients, suggesting it may be related to muscle loss in humans as it has been shown to be in mice experiencing muscle atrophy as a result of malignant tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...