Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Ann Neurol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721781

RESUMO

OBJECTIVE: Bradykinesia and rigidity are considered closely related motor signs in Parkinson disease (PD), but recent neurophysiological findings suggest distinct pathophysiological mechanisms. This study aims to examine and compare longitudinal changes in bradykinesia and rigidity in PD patients treated with bilateral subthalamic nucleus deep brain stimulation (STN-DBS). METHODS: In this retrospective cohort study, the clinical progression of appendicular and axial bradykinesia and rigidity was assessed up to 15 years after STN-DBS in the best treatment conditions (ON medication and ON stimulation). The severity of bradykinesia and rigidity was examined using ad hoc composite scores from specific subitems of the Unified Parkinson's Disease Rating Scale motor part (UPDRS-III). Short- and long-term predictors of bradykinesia and rigidity were analyzed through linear regression analysis, considering various preoperative demographic and clinical data, including disease duration and severity, phenotype, motor and cognitive scores (eg, frontal score), and medication. RESULTS: A total of 301 patients were examined before and 1 year after surgery. Among them, 101 and 56 individuals were also evaluated at 10-year and 15-year follow-ups, respectively. Bradykinesia significantly worsened after surgery, especially in appendicular segments (p < 0.001). Conversely, rigidity showed sustained benefit, with unchanged clinical scores compared to preoperative assessment (p > 0.05). Preoperative motor disability (eg, composite scores from the UPDRS-III) predicted short- and long-term outcomes for both bradykinesia and rigidity (p < 0.01). Executive dysfunction was specifically linked to bradykinesia but not to rigidity (p < 0.05). INTERPRETATION: Bradykinesia and rigidity show long-term divergent progression in PD following STN-DBS and are associated with independent clinical factors, supporting the hypothesis of partially distinct pathophysiology. ANN NEUROL 2024.

2.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475089

RESUMO

We propose a new methodology for long-term biopotential recording based on an MEMS multisensor integrated platform featuring a commercial electrostatic charge-transfer sensor. This family of sensors was originally intended for presence tracking in the automotive industry, so the existing setup was engineered for the acquisition of electrocardiograms, electroencephalograms, electrooculograms, and electromyography, designing a dedicated front-end and writing proper firmware for the specific application. Systematic tests on controls and nocturnal acquisitions from patients in a domestic environment will be discussed in detail. The excellent results indicate that this technology can provide a low-power, unexplored solution to biopotential acquisition. The technological breakthrough is in that it enables adding this type of functionality to existing MEMS boards at near-zero additional power consumption. For these reasons, it opens up additional possibilities for wearable sensors and strengthens the role of MEMS technology in medical wearables for the long-term synchronous acquisition of a wide range of signals.


Assuntos
Sistemas Microeletromecânicos , Humanos , Tecnologia , Eletrocardiografia , Eletroencefalografia , Eletromiografia
3.
Front Neurol ; 14: 1296924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145127

RESUMO

Introduction: Pure hereditary spastic paraplegia (SPG) type 4 (SPG4) is caused by mutations of SPAST gene. This study aimed to analyze SPAST variants in SPG4 patients to highlight the occurrence of splicing mutations and combine functional studies to assess the relevance of these variants in the molecular mechanisms of the disease. Methods: We performed an NGS panel in 105 patients, in silico analysis for splicing mutations, and in vitro minigene assay. Results and discussion: The NGS panel was applied to screen 105 patients carrying a clinical phenotype corresponding to upper motor neuron syndrome (UMNS), selectively affecting motor control of lower limbs. Pathogenic mutations in SPAST were identified in 12 patients (11.42%), 5 missense, 3 frameshift, and 4 splicing variants. Then, we focused on the patients carrying splicing variants using a combined approach of in silico and in vitro analysis through minigene assay and RNA, if available. For two splicing variants (i.e., c.1245+1G>A and c.1414-2A>T), functional assays confirm the types of molecular alterations suggested by the in silico analysis (loss of exon 9 and exon 12). In contrast, the splicing variant c.1005-1delG differed from what was predicted (skipping exon 7), and the functional study indicates the loss of frame and formation of a premature stop codon. The present study evidenced the high splice variants in SPG4 patients and indicated the relevance of functional assays added to in silico analysis to decipher the pathogenic mechanism.

4.
Front Neurol ; 14: 1267360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928137

RESUMO

Introduction: Deep brain stimulation of the subthalamic nucleus (STN-DBS) can exert relevant effects on the voice of patients with Parkinson's disease (PD). In this study, we used artificial intelligence to objectively analyze the voices of PD patients with STN-DBS. Materials and methods: In a cross-sectional study, we enrolled 108 controls and 101 patients with PD. The cohort of PD was divided into two groups: the first group included 50 patients with STN-DBS, and the second group included 51 patients receiving the best medical treatment. The voices were clinically evaluated using the Unified Parkinson's Disease Rating Scale part-III subitem for voice (UPDRS-III-v). We recorded and then analyzed voices using specific machine-learning algorithms. The likelihood ratio (LR) was also calculated as an objective measure for clinical-instrumental correlations. Results: Clinically, voice impairment was greater in STN-DBS patients than in those who received oral treatment. Using machine learning, we objectively and accurately distinguished between the voices of STN-DBS patients and those under oral treatments. We also found significant clinical-instrumental correlations since the greater the LRs, the higher the UPDRS-III-v scores. Discussion: STN-DBS deteriorates speech in patients with PD, as objectively demonstrated by machine-learning voice analysis.

5.
Sensors (Basel) ; 23(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37960670

RESUMO

Daily steps could be a valuable indicator of real-world ambulation in Parkinson's disease (PD). Nonetheless, no study to date has investigated the minimum number of days required to reliably estimate the average daily steps through commercial smartwatches in people with PD. Fifty-six patients were monitored through a commercial smartwatch for 5 consecutive days. The total daily steps for each day was recorded and the average daily steps was calculated as well as the working and weekend days average steps. The intraclass correlation coefficient (ICC) (3,k), standard error of measurement (SEM), Bland-Altman statistics, and minimum detectable change (MDC) were used to evaluate the reliability of the step count for every combination of 2-5 days. The threshold for acceptability was set at an ICC ≥ 0.8 with a lower bound of CI 95% ≥ 0.75 and a SAM < 10%. ANOVA and Mann-Whitney tests were used to compare steps across the days and between the working and weekend days, respectively. Four days were needed to achieve an acceptable reliability (ICC range: 0.84-0.90; SAM range: 7.8-9.4%). In addition, daily steps did not significantly differ across the days and between the working and weekend days. These findings could support the use of step count as a walking activity index and could be relevant to developing monitoring, preventive, and rehabilitation strategies for people with PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/reabilitação , Reprodutibilidade dos Testes , Caminhada
6.
Clin Neurophysiol ; 154: 107-115, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595480

RESUMO

OBJECTIVE: Chronic pain may lead to functional changes in several brain regions, including the primary motor cortex (M1). Our neurophysiological study aimed to probe M1 plasticity, through a non-invasive transcranial magnetic stimulation protocol, in a cohort of patients with chronic pain. METHODS: Twenty patients with chronic pain (age ± SD: 62.9 ± 9.9) and 20 age- and sex-matched healthy controls (age ± SD: 59.6 ± 15.8) were recruited. Standardized scales were used for the evaluation of pain severity. Neurophysiological measures included laser-evoked potentials (LEPs) and motor-evoked potentials (MEPs) collected at baseline and over 60 minutes following a standardized Laser-paired associative stimulation (Laser-PAS) protocol. RESULTS: LEPs and MEPs were comparable in patients with chronic pain and controls. The pain threshold was lower in patients than in controls. Laser-PAS elicited decreased responses in patients with chronic pain. The response to Laser-PAS was similar in subgroups of patients with different chronic pain phenotypes. CONCLUSIONS: M1 plasticity, as tested by Laser-PAS, is altered in patients with chronic pain, possibly reflecting abnormal pain-motor integration processes. SIGNIFICANCE: Chronic pain is associated with a disorder of M1 plasticity raising from abnormal pain-motor integration.


Assuntos
Dor Crônica , Córtex Motor , Humanos , Dor Crônica/diagnóstico , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Limiar da Dor , Plasticidade Neuronal/fisiologia
7.
Brain ; 146(9): 3705-3718, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37018058

RESUMO

Although rigidity is a cardinal motor sign in patients with Parkinson's disease (PD), the instrumental measurement of this clinical phenomenon is largely lacking, and its pathophysiological underpinning remains still unclear. Further advances in the field would require innovative methodological approaches able to measure parkinsonian rigidity objectively, discriminate the different biomechanical sources of muscle tone (neural or visco-elastic components), and finally clarify the contribution to 'objective rigidity' exerted by neurophysiological responses, which have previously been associated with this clinical sign (i.e. the long-latency stretch-induced reflex). Twenty patients with PD (67.3 ± 6.9 years) and 25 age- and sex-matched controls (66.9 ± 7.4 years) were recruited. Rigidity was measured clinically and through a robotic device. Participants underwent robot-assisted wrist extensions at seven different angular velocities randomly applied, when ON therapy. For each value of angular velocity, several biomechanical (i.e. elastic, viscous and neural components) and neurophysiological measures (i.e. short and long-latency reflex and shortening reaction) were synchronously assessed and correlated with the clinical score of rigidity (i.e. Unified Parkinson's Disease Rating Scale-part III, subitems for the upper limb). The biomechanical investigation allowed us to measure 'objective rigidity' in PD and estimate the neuronal source of this phenomenon. In patients, 'objective rigidity' progressively increased along with the rise of angular velocities during robot-assisted wrist extensions. The neurophysiological examination disclosed increased long-latency reflexes, but not short-latency reflexes nor shortening reaction, in PD compared with control subjects. Long-latency reflexes progressively increased according to angular velocities only in patients with PD. Lastly, specific biomechanical and neurophysiological abnormalities correlated with the clinical score of rigidity. 'Objective rigidity' in PD correlates with velocity-dependent abnormal neuronal activity. The observations overall (i.e. the velocity-dependent feature of biomechanical and neurophysiological measures of objective rigidity) would point to a putative subcortical network responsible for 'objective rigidity' in PD, which requires further investigation.


Assuntos
Doença de Parkinson , Humanos , Rigidez Muscular/etiologia , Rigidez Muscular/diagnóstico , Rigidez Muscular/tratamento farmacológico , Reflexo de Estiramento/fisiologia , Reflexo Anormal , Eletromiografia
8.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36560278

RESUMO

Dynamic posturography combined with wearable sensors has high sensitivity in recognizing subclinical balance abnormalities in patients with Parkinson's disease (PD). However, this approach is burdened by a high analytical load for motion analysis, potentially limiting a routine application in clinical practice. In this study, we used machine learning to distinguish PD patients from controls, as well as patients under and not under dopaminergic therapy (i.e., ON and OFF states), based on kinematic measures recorded during dynamic posturography through portable sensors. We compared 52 different classifiers derived from Decision Tree, K-Nearest Neighbor, Support Vector Machine and Artificial Neural Network with different kernel functions to automatically analyze reactive postural responses to yaw perturbations recorded through IMUs in 20 PD patients and 15 healthy subjects. To identify the most efficient machine learning algorithm, we applied three threshold-based selection criteria (i.e., accuracy, recall and precision) and one evaluation criterion (i.e., goodness index). Twenty-one out of 52 classifiers passed the three selection criteria based on a threshold of 80%. Among these, only nine classifiers were considered "optimum" in distinguishing PD patients from healthy subjects according to a goodness index ≤ 0.25. The Fine K-Nearest Neighbor was the best-performing algorithm in the automatic classification of PD patients and healthy subjects, irrespective of therapeutic condition. By contrast, none of the classifiers passed the three threshold-based selection criteria in the comparison of patients in ON and OFF states. Overall, machine learning is a suitable solution for the early identification of balance disorders in PD through the automatic analysis of kinematic data from dynamic posturography.


Assuntos
Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Humanos , Doença de Parkinson/diagnóstico , Aprendizado de Máquina , Algoritmos , Redes Neurais de Computação , Máquina de Vetores de Suporte , Equilíbrio Postural/fisiologia
9.
NPJ Parkinsons Dis ; 8(1): 121, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153351

RESUMO

In this retrospective study, we longitudinally analyzed axial impairment and falls in people with Parkinson's disease (PD) and subthalamic nucleus deep brain stimulation (STN-DBS). Axial scores and falling frequency were examined at baseline, and 1, 10, and 15 years after surgery. Preoperative demographic and clinical data, including PD duration and severity, phenotype, motor and cognitive scales, medications, and vascular changes on neuroimaging were examined as possible risk factors through Kaplan-Meier and Cox regression analyses. Of 302 individuals examined before and at 1 year after surgery, 102 and 57 were available also at 10 and 15 years of follow-up, respectively. Axial scores were similar at baseline and at 1 year but worsened at 10 and 15 years. The prevalence rate of frequent fallers progressively increased from baseline to 15 years. Preoperative axial scores, frontal dysfunction and age at PD onset were risk factors for axial impairment progression after surgery. Axial scores, akinetic/rigid phenotype, age at disease onset and disease duration at surgery predicted frequent falls. Overall, axial signs progressively worsened over the long-term period following STN-DBS, likely related to the progression of PD, especially in a subgroup of subjects with specific risk factors.

10.
Front Aging Neurosci ; 14: 889930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601625

RESUMO

Background: Handwriting is an acquired complex cognitive and motor skill resulting from the activation of a widespread brain network. Handwriting therefore may provide biologically relevant information on health status. Also, handwriting can be collected easily in an ecological scenario, through safe, cheap, and largely available tools. Hence, objective handwriting analysis through artificial intelligence would represent an innovative strategy for telemedicine purposes in healthy subjects and people affected by neurological disorders. Materials and Methods: One-hundred and fifty-six healthy subjects (61 males; 49.6 ± 20.4 years) were enrolled and divided according to age into three subgroups: Younger adults (YA), middle-aged adults (MA), and older adults (OA). Participants performed an ecological handwriting task that was digitalized through smartphones. Data underwent the DBNet algorithm for measuring and comparing the average stroke sizes in the three groups. A convolutional neural network (CNN) was also used to classify handwriting samples. Lastly, receiver operating characteristic (ROC) curves and sensitivity, specificity, positive, negative predictive values (PPV, NPV), accuracy and area under the curve (AUC) were calculated to report the performance of the algorithm. Results: Stroke sizes were significantly smaller in OA than in MA and YA. The CNN classifier objectively discriminated YA vs. OA (sensitivity = 82%, specificity = 80%, PPV = 78%, NPV = 79%, accuracy = 77%, and AUC = 0.84), MA vs. OA (sensitivity = 84%, specificity = 56%, PPV = 78%, NPV = 73%, accuracy = 74%, and AUC = 0.7), and YA vs. MA (sensitivity = 75%, specificity = 82%, PPV = 79%, NPV = 83%, accuracy = 79%, and AUC = 0.83). Discussion: Handwriting progressively declines with human aging. The effect of physiological aging on handwriting abilities can be detected remotely and objectively by using machine learning algorithms.

12.
Sensors (Basel) ; 22(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35408181

RESUMO

In this work, we propose a wireless wearable system for the acquisition of multiple biopotentials through charge transfer electrostatic sensors realized in MEMS technology. The system is designed for low power consumption and low invasiveness, and thus candidates for long-time monitoring in free-living conditions, with data recording on an SD or wireless transmission to an external elaborator. Thanks to the wide horizon of applications, research is very active in this field, and in the last few years, some devices have been introduced on the market. The main problem with those devices is that their operation is time-limited, so they do not match the growing demand for long monitoring, which is a must-have feature in diagnosing specific diseases. Furthermore, their versatility is hampered by the fact that they have been designed to record just one type of signal. Using ST-Qvar sensors, we acquired an electrocardiogram trace and single-channel scalp electroencephalogram from the frontal lobes, together with an electrooculogram. Excellent results from all three types of acquisition tests were obtained. The power consumption is very low, demonstrating that, thanks to the MEMS technology, a continuous acquisition is feasible for several days.


Assuntos
Sistemas Microeletromecânicos , Dispositivos Eletrônicos Vestíveis , Fontes de Energia Elétrica , Eletrocardiografia , Tecnologia sem Fio
14.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161694

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder associated with widespread aggregation of α-synuclein and dopaminergic neuronal loss in the substantia nigra pars compacta. As a result, striatal dopaminergic denervation leads to functional changes in the cortico-basal-ganglia-thalamo-cortical loop, which in turn cause most of the parkinsonian signs and symptoms. Despite tremendous advances in the field in the last two decades, the overall management (i.e., diagnosis and follow-up) of patients with PD remains largely based on clinical procedures. Accordingly, a relevant advance in the field would require the development of innovative biomarkers for PD. Recently, the development of miniaturized electrochemical sensors has opened new opportunities in the clinical management of PD thanks to wearable devices able to detect specific biological molecules from various body fluids. We here first summarize the main wearable electrochemical technologies currently available and their possible use as medical devices. Then, we critically discuss the possible strengths and weaknesses of wearable electrochemical devices in the management of chronic diseases including PD. Finally, we speculate about possible future applications of wearable electrochemical sensors in PD, such as the attractive opportunity for personalized closed-loop therapeutic approaches.


Assuntos
Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Biomarcadores , Corpo Estriado , Dopamina , Humanos , Doença de Parkinson/diagnóstico
15.
Sensors (Basel) ; 22(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35062375

RESUMO

BACKGROUND: Current telemedicine approaches lack standardised procedures for the remote assessment of axial impairment in Parkinson's disease (PD). Unobtrusive wearable sensors may be a feasible tool to provide clinicians with practical medical indices reflecting axial dysfunction in PD. This study aims to predict the postural instability/gait difficulty (PIGD) score in PD patients by monitoring gait through a single inertial measurement unit (IMU) and machine-learning algorithms. METHODS: Thirty-one PD patients underwent a 7-m timed-up-and-go test while monitored through an IMU placed on the thigh, both under (ON) and not under (OFF) dopaminergic therapy. After pre-processing procedures and feature selection, a support vector regression model was implemented to predict PIGD scores and to investigate the impact of L-Dopa and freezing of gait (FOG) on regression models. RESULTS: Specific time- and frequency-domain features correlated with PIGD scores. After optimizing the dimensionality reduction methods and the model parameters, regression algorithms demonstrated different performance in the PIGD prediction in patients OFF and ON therapy (r = 0.79 and 0.75 and RMSE = 0.19 and 0.20, respectively). Similarly, regression models showed different performances in the PIGD prediction, in patients with FOG, ON and OFF therapy (r = 0.71 and RMSE = 0.27; r = 0.83 and RMSE = 0.22, respectively) and in those without FOG, ON and OFF therapy (r = 0.85 and RMSE = 0.19; r = 0.79 and RMSE = 0.21, respectively). CONCLUSIONS: Optimized support vector regression models have high feasibility in predicting PIGD scores in PD. L-Dopa and FOG affect regression model performances. Overall, a single inertial sensor may help to remotely assess axial motor impairment in PD patients.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Marcha , Humanos , Doença de Parkinson/diagnóstico , Equilíbrio Postural , Estudos de Tempo e Movimento
16.
Brain Stimul ; 15(1): 99-108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34823038

RESUMO

BACKGROUND: Abnormal glutamatergic neurotransmission in the primary motor cortex (M1) contributes to Parkinson's disease (PD) pathophysiology and is related to l-dopa-induced dyskinesia (LID). We previously showed that short-term treatment with safinamide, a monoamine oxidase type-B inhibitor with anti-glutamatergic properties, improves abnormally enhanced short-interval intracortical facilitation (SICF) in PD patients. OBJECTIVE: To examine whether a long-term SICF modulation has beneficial effects on clinical measures, including LID severity, and whether these changes parallel improvement in cortical plasticity mechanisms in PD. METHODS: We tested SICF in patients with and without LID before (S0) and after short- (14 days - S1) and long-term (12 months - S2) treatment with safinamide 100 mg/day. Possible changes in M1 plasticity were assessed using intermittent theta-burst stimulation (iTBS). Finally, we correlated safinamide-related neurophysiological changes with modifications in clinical scores. RESULTS: SICF was enhanced at S0, and prominently in patients with LID. Safinamide normalized SICF at S1, and this effect persisted at S2. Impaired iTBS-induced plasticity was present at S0 and safinamide restored this alteration at S2. There was a significant correlation between the degree of SICF and the amount of iTBS-induced plasticity at S0 and S2. In patients with LID, the degree of SICF at S0 and S2 correlated with long-term changes in LID severity. CONCLUSIONS: Altered SICF contributes to M1 plasticity impairment in PD. Both SICF and M1 plasticity improve after long-term treatment with safinamide. The abnormality in SICF-related glutamatergic circuits plays a role in LID pathophysiology, and its long-term modulation may prevent LID worsening over time.


Assuntos
Discinesias , Córtex Motor , Doença de Parkinson , Potencial Evocado Motor/fisiologia , Humanos , Levodopa/efeitos adversos , Córtex Motor/fisiologia , Doença de Parkinson/tratamento farmacológico , Estimulação Magnética Transcraniana
17.
Clin Neurophysiol ; 132(10): 2422-2430, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34454269

RESUMO

OBJECTIVE: Early postural instability (PI) is a red flag for the diagnosis of Parkinson's disease (PD). Several patients, however, fall within the first three years of disease, particularly when turning. We investigated whether PD patients, without clinically overt PI, manifest abnormal reactive postural responses to ecological perturbations resembling turning. METHODS: Fifteen healthy subjects and 20 patients without clinically overt PI, under and not under L-Dopa, underwent dynamic posturography during axial rotations around the longitudinal axis, provided by a robotic mechatronic platform. We measured reactive postural responses, including body displacement and reciprocal movements of the head, trunk, and pelvis, by using a network of three wearable inertial sensors. RESULTS: Patients showed higher body displacement of the head, trunk and pelvis, and lower joint movements at the lumbo-sacral junction than controls. Conversely, movements at the cranio-cervical junction were normal in PD. L-Dopa left reactive postural responses unchanged. CONCLUSIONS: Patients with PD without clinically overt PI manifest abnormal reactive postural responses to axial rotations, unresponsive to L-Dopa. The biomechanical model resulting from our experimental approach supports novel pathophysiological hypotheses of abnormal axial rotations in PD. SIGNIFICANCE: PD patients without clinically overt PI present subclinical balance impairment during axial rotations, unresponsive to L-Dopa.


Assuntos
Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Robótica/métodos , Rotação , Dispositivos Eletrônicos Vestíveis , Idoso , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Diagnóstico Precoce , Feminino , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Equilíbrio Postural/efeitos dos fármacos , Robótica/instrumentação
18.
Clin Neurophysiol ; 132(6): 1358-1366, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781703

RESUMO

OBJECTIVE: In healthy subjects, the long-term potentiation (LTP)-like plasticity of the primary motor cortex (M1) induced by intermittent theta-burst stimulation (iTBS) can be boosted by modulating gamma (γ) oscillations through transcranial alternating current stimulation (tACS). γ-tACS also reduces short-interval intracortical inhibition (SICI). We tested whether the effects of γ-tACS differ between young (YA) and older adults (OA). METHODS: Twenty YA (27.2 ± 2.7 years) and twenty OA (65.3 ± 9.5 years) underwent iTBS-γ tACS and iTBS-sham tACS in randomized sessions. In a separate session, we delivered γ-tACS alone and recorded SICI during stimulation. RESULTS: iTBS-sham tACS produced comparable motor evoked potential (MEP) facilitation between groups. While iTBS-γ tACS boosted MEP facilitation in both the YA and OA groups, the magnitude of its effect was significantly lower in OA. Similarly, γ-tACS-induced modulation of GABA-A-ergic neurotransmission, as tested by SICI, was reduced in OA. The effect of iTBS-γ tACS negatively correlated with the age of OA subjects. CONCLUSIONS: Mechanisms underlying the effects of γ oscillations on LTP-like plasticity become less efficient in older adults. This could reflect age-related changes in neural elements of M1 resonant to γ oscillations, including GABA-A-ergic interneurons. SIGNIFICANCE: The beneficial effect of γ-tACS on iTBS-induced plasticity is reduced in older adults.


Assuntos
Ritmo Gama/fisiologia , Córtex Motor/fisiopatologia , Plasticidade Neuronal/fisiologia , Adulto , Fatores Etários , Idoso , Envelhecimento/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Adulto Jovem
19.
Sensors (Basel) ; 21(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477323

RESUMO

Freezing of gait (FOG) is one of the most troublesome symptoms of Parkinson's disease, affecting more than 50% of patients in advanced stages of the disease. Wearable technology has been widely used for its automatic detection, and some papers have been recently published in the direction of its prediction. Such predictions may be used for the administration of cues, in order to prevent the occurrence of gait freezing. The aim of the present study was to propose a wearable system able to catch the typical degradation of the walking pattern preceding FOG episodes, to achieve reliable FOG prediction using machine learning algorithms and verify whether dopaminergic therapy affects the ability of our system to detect and predict FOG. METHODS: A cohort of 11 Parkinson's disease patients receiving (on) and not receiving (off) dopaminergic therapy was equipped with two inertial sensors placed on each shin, and asked to perform a timed up and go test. We performed a step-to-step segmentation of the angular velocity signals and subsequent feature extraction from both time and frequency domains. We employed a wrapper approach for feature selection and optimized different machine learning classifiers in order to catch FOG and pre-FOG episodes. RESULTS: The implemented FOG detection algorithm achieved excellent performance in a leave-one-subject-out validation, in patients both on and off therapy. As for pre-FOG detection, the implemented classification algorithm achieved 84.1% (85.5%) sensitivity, 85.9% (86.3%) specificity and 85.5% (86.1%) accuracy in leave-one-subject-out validation, in patients on (off) therapy. When the classification model was trained with data from patients on (off) and tested on patients off (on), we found 84.0% (56.6%) sensitivity, 88.3% (92.5%) specificity and 87.4% (86.3%) accuracy. CONCLUSIONS: Machine learning models are capable of predicting FOG before its actual occurrence with adequate accuracy. The dopaminergic therapy affects pre-FOG gait patterns, thereby influencing the algorithm's effectiveness.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Acelerometria , Idoso , Feminino , Marcha , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Humanos , Aprendizado de Máquina , Masculino , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Equilíbrio Postural , Estudos de Tempo e Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...