RESUMO
BACKGROUND: More than 80% of patients may experience acute pain after a surgical procedure, and this is often refractory to pharmacological intervention. The identification of new targets to treat postoperative pain is necessary. There is an association of polymorphisms in the Cav2.3 gene with postoperative pain and opioid consumption. Our study aimed to identify Cav2.3 as a potential target to treat postoperative pain and to reduce opioid-related side effects. EXPERIMENTAL APPROACH: A plantar incision model was established in adult male and female C57BL/6 mice. Cav2.3 expression was detected by qPCR and suppressed by siRNA treatment. The antinociceptive efficacy and safety of a Cav2.3 blocker-alone or together with morphine-was also assessed after surgery. KEY RESULTS: Paw incision in female and male mice caused acute nociception and increased Cav2.3 mRNA expression in the spinal cord but not in the incised tissue. Intrathecal treatment with siRNA against Cav2.3, but not with a scrambled siRNA, prevented the development of surgery-induced nociception in both male and female mice, with female mice experiencing long-lasting effects. High doses of i.t. SNX-482, a Cav2.3 channel blocker, or morphine injected alone, reversed postoperative nociception but also induced side effects. A combination of lower doses of morphine and SNX-482 mediated a long-lasting reversal of postsurgical pain in female and male mice. CONCLUSION: Our results demonstrate that Cav2.3 has a pronociceptive role in the induction of postoperative pain, indicating that it is a potential target for the development of therapeutic approaches for the treatment of postoperative pain.
Assuntos
Canais de Cálcio Tipo R , Dor Pós-Operatória , Medula Espinal , Animais , Feminino , Masculino , Camundongos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/administração & dosagem , Canais de Cálcio Tipo R/metabolismo , Canais de Cálcio Tipo R/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Morfina/administração & dosagem , Nociceptividade/efeitos dos fármacos , Dor Pós-Operatória/metabolismo , Dor Pós-Operatória/tratamento farmacológico , RNA Interferente Pequeno , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacosRESUMO
The present study was undertaken to explore the relative contributions of Cav3.2 T-type channels to mediating the antihyperalgesic activity of joint manipulation (JM) therapy. We used the chronic constriction injury model (CCI) to induce peripheral neuropathy and chronic pain in male mice, followed by JM. We demonstrate that JM produces long-lasting mechanical anti-hyperalgesia that is abolished in Cav3.2 null mice. Moreover, we found that JM displays a similar analgesic profile as the fatty acid amide hydrolase inhibitor URB597, suggesting a possible converging mechanism of action involving endocannabinoids. Overall, our findings advance our understanding of the mechanisms through which JM produces analgesia.
Assuntos
Analgesia , Canais de Cálcio Tipo T , Camundongos , Masculino , Animais , Dor , Hiperalgesia/complicações , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Canais de Cálcio Tipo T/metabolismoRESUMO
Activation of nociceptin opioid peptide receptors (NOP, a.k.a. opioid-like receptor-1, ORL-1) by the ligand nociceptin/orphanin FQ, leads to G protein-dependent regulation of Cav2.2 (N-type) voltage-gated calcium channels (VGCCs). This typically causes a reduction in calcium currents, triggering changes in presynaptic calcium levels and thus neurotransmission. Because of the widespread expression patterns of NOP and VGCCs across multiple brain regions, the dorsal horn of the spinal cord, and the dorsal root ganglia, this results in the alteration of numerous neurophysiological features. Here we review the regulation of N-type calcium channels by the NOP-nociceptin system in the context of neurological conditions such as anxiety, addiction, and pain.
Assuntos
Canais de Cálcio Tipo N , Doenças do Sistema Nervoso , Humanos , Analgésicos Opioides , Cálcio , Receptor de NociceptinaRESUMO
Trigeminal neuropathic pain has been modeled in rodents through the constriction of the infraorbital nerve (CCI-ION). Sensory alterations, including spontaneous pain, and thermal and mechanical hyperalgesia are well characterized, but there is a notable lack of evidence about the affective pain component in this model. Evaluation of the emotional component of pain in rats has been proposed as a way to optimize potential translational value of non-clinical studies. In rats, 22 and 50 kHz ultrasonic vocalizations (USVs) are considered well-established measures of negative and positive emotional states, respectively. Thus, this study tested the hypothesis that trigeminal neuropathic pain would result, in addition to the sensory alterations, in a decrease of 50 kHz USV, which may be related to altered function of brain areas involved in emotional pain processing. CCI-ION surgery was performed on 60-day-old male Wistar rats. 15 days after surgery, von Frey filaments were applied to detect mechanical hyperalgesia, and USV was recorded. At the same timepoint, systemic treatment with d,l-amphetamine (1 mg/kg) allowed investigation of the involvement of the dopaminergic system in USV emission. Finally, brain tissue was collected to assess the change in tyrosine hydroxylase (TH) expression in the nucleus accumbens (NAc) and c-Fos expression in brain areas involved in emotional pain processing, including the prefrontal cortex (PFC), amygdala, and NAc. The results showed that CCI-ION rats presented mechanical hyperalgesia and a significant reduction of environmental-induced 50 kHz USV. Amphetamine caused a marked increase in 50 kHz USV emission in CCI-ION rats. In addition, TH expression was lower in constricted animals and c-Fos analysis revealed an increase in neuronal activation. Taken together, these data indicate that CCI-ION causes a reduction in the emission of environmental-induced appetitive calls concomitantly with facial mechanical hyperalgesia and that both changes may be related to a reduction in the mesolimbic dopaminergic activity.
Assuntos
Neuralgia , Neuralgia do Trigêmeo , Animais , Hiperalgesia/tratamento farmacológico , Masculino , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Neuralgia do Trigêmeo/complicaçõesRESUMO
Acute pain that persists for a few days is associated with a reduction in patients' quality of life. Orofacial persistent pain promotes psychological disorders such as anxiety, impairs daily essential activities such as eating, and results in decreased social interaction. Here, we investigated whether rats subjected to orofacial formalin injection or intraoral incision surgery display persistent facial heat hyperalgesia, ongoing pain, anxiety-like behavior, and changes in ultrasonic vocalization. Orofacial formalin injection or intraoral incision caused facial heat hyperalgesia for 3 days compared with saline-injected and sham animals. In addition, both experimental groups showed a reduction in the number of entries and in the time spent in the open arms in the elevated plus maze test on day 3, suggesting that anxiety-like behavior developed as a consequence of persistent pain. At this time point, both groups also displayed a reduction in the number of 50-kHz calls, specifically in the flat subtype, which suggests a decrease in social communication. Moreover, on day 3 after surgery, systemic morphine produced robust conditioned place preference in rats subjected to intraoral incision compared with sham, and the former group also presented increased spontaneous facial grooming, revealing the presence of ongoing pain. Finally, Western blot and immunohistochemistry analysis showed a reduction in tyrosine hydroxylase expression in the nucleus accumbens, which may reflect a decrease in mesolimbic dopaminergic activity. Altogether, the results demonstrate that acute orofacial pain causes prolonged changes in behavioral and affective pain components, which may be related to dopaminergic changes in the nucleus accumbens.
Assuntos
Dor Aguda , Animais , Modelos Animais de Doenças , Dor Facial , Humanos , Hiperalgesia/etiologia , Qualidade de Vida , Ratos , Ratos WistarRESUMO
Clinical and preclinical studies have shown that patients with Diabetic Neuropathy Pain (DNP) present with increased tumor necrosis factor alpha (TNF-α) serum concentration, whereas studies with diabetic animals have shown that TNF-α induces an increase in NaV1.7 sodium channel expression. This is expected to result in sensitization of nociceptor neuron terminals, and therefore the development of DNP. For further study of this mechanism, dissociated dorsal root ganglion (DRG) neurons were exposed to TNF-α for 6 h, at a concentration equivalent to that measured in STZ-induced diabetic rats that developed hyperalgesia. Tetrodotoxin sensitive (TTXs), resistant (TTXr) and total sodium current was studied in these DRG neurons. Total sodium current was also studied in DRG neurons expressing the collapsin response mediator protein 2 (CRMP2) SUMO-incompetent mutant protein (CRMP2-K374A), which causes a significant reduction in NaV1.7 membrane cell expression levels. Our results show that TNF-α exposure increased the density of the total, TTXs and TTXr sodium current in DRG neurons. Furthermore, TNF-α shifted the steady state activation and inactivation curves of the total and TTXs sodium current. DRG neurons expressing the CRMP2-K374A mutant also exhibited total sodium current increases after exposure to TNF-α, indicating that these effects were independent of SUMOylation of CRMP2. In conclusion, TNF-α sensitizes DRG neurons via augmentation of whole cell sodium current. This may underlie the pronociceptive effects of TNF-α and suggests a molecular mechanism responsible for pain hypersensitivity in diabetic neuropathy patients.
Assuntos
Gânglios Espinais/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sumoilação , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Animais , Comportamento Animal , Membrana Celular/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Hiperalgesia/sangue , Hiperalgesia/complicações , Ativação do Canal Iônico , Masculino , Proteínas Mutantes/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Fator de Necrose Tumoral alfa/sangueRESUMO
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein. In addition to facilitating neurodegeneration, mutant htt is implicated in HD-related alterations of neurotransmission. Previous data showed that htt can modulate N-type voltage-gated Ca2+ channels (Cav2.2), which are essential for presynaptic neurotransmitter release. Thus, to elucidate the mechanism underlying mutant htt-mediated alterations in neurotransmission, we investigated how Cav2.2 is affected by full-length mutant htt expression in a mouse model of HD (BACHD). Our data indicate that young BACHD mice exhibit increased striatal glutamate release, which is reduced to wild type levels following Cav2.2 block. Cav2.2 Ca2+ current-density and plasma membrane expression are increased in BACHD mice, which could account for increased glutamate release. Moreover, mutant htt affects the interaction between Cav2.2 and 2 major channel regulators, namely syntaxin 1A and Gßγ protein. Notably, 12-month old BACHD mice exhibit decreased Cav2.2 cell surface expression and glutamate release, suggesting that Cav2.2 alterations vary according to disease stage.
Assuntos
Canais de Cálcio Tipo N/fisiologia , Proteína Huntingtina/genética , Proteína Huntingtina/fisiologia , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Mutação , Transmissão Sináptica/genética , Animais , Modelos Animais de Doenças , Glutamatos/metabolismo , Camundongos Transgênicos , Neurotransmissores/metabolismo , Sinapses/metabolismo , Sintaxina 1/fisiologiaRESUMO
We reported recently a new mechanism by which the neuronal N-type Ca(2+) (CaV2.2) channel expression may be regulated by ubiquitination. This mechanism involves the interaction between the channel and the light chain (LC1) of the microtubule associated protein B (MAP1B). We also showed that MAP1B-LC1 could interact with the ubiquitin-conjugating E2 enzyme UBE2L3 and that the ubiquitination/degradation mechanism triggered by MAP1B-LC1 could be prevented by inhibiting the ubiquitin-proteasome proteolytic pathway. We now report that MAP1B-LC1 can interact with the 2 main variants of the CaV2.2 channels (CaV2.2e37a and CaV2.2e37b) and that the MAP1B-LC1-mediated regulation most likely involves an internalization of the channels via a dynamin and clathrin-dependent pathway. In addition, here we propose that this novel mechanism of CaV channel regulation might be conserved among N-type and P/Q-type channels.
Assuntos
Biocatálise , Canais de Cálcio Tipo N/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Células Cultivadas , Células HEK293 , HumanosRESUMO
Microtubule-associated protein B is a cytoskeleton protein consisting of heavy and light (LC) chains that play important roles in the regulation of neuronal morphogenesis and function. LC1 is also well known to interact with diverse ionotropic receptors at postsynapse. Much less is known, however, regarding the role of LC1 at presynaptic level where voltage-gated N-type Ca(2+) channels couple membrane depolarization to neurotransmitter release. Here, we investigated whether LC1 interacts with the N-type channels. Co-localization analysis revealed spatial proximity of the two proteins in hippocampal neurons. The interaction between LC1 and the N-type channel was demonstrated using co-immunoprecipitation experiments and in vitro pull-down assays. Detailed biochemical analysis suggested that the interaction occurs through the N-terminal of LC1 and the C-terminal of the pore-forming CaVα1 subunit of the channels. Patch-clamp studies in HEK-293 cells revealed a significant decrease in N-type currents upon LC1 expression, without apparent changes in kinetics. Recordings performed in the presence of MG132 prevented the actions of LC1 suggesting enhanced channel proteasomal degradation. Interestingly, using the yeast two-hybrid system and immunoprecipitation assays in HEK-293 cells, we revealed an interaction between LC1 and the ubiquitin-conjugating enzyme UBE2L3. Furthermore, we found that the LC1/UBE2L3 complex could interact with the N-type channels, suggesting that LC1 may act as a scaffold protein to increase UBE2L3-mediated channel ubiquitination. Together these results revealed a novel functional coupling between LC1 and the N-type channels.
Assuntos
Canais de Cálcio Tipo N/metabolismo , Membrana Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Células Cultivadas , Células HEK293 , Hipocampo/metabolismo , Humanos , Imunoprecipitação/métodos , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismoRESUMO
Angiotensin II regulation of L-type calcium currents in cardiac muscle is controversial and the underlying signaling events are not completely understood. Moreover, the possible role of auxiliary subunit composition of the channels in Angiotensin II modulation of L-type calcium channels has not yet been explored. In this work we study the role of Ca(v)ß subunits and the intracellular signaling responsible for L-type calcium current modulation by Angiotensin II. In cardiomyocytes, Angiotensin II exposure induces rapid inhibition of L-type current with a magnitude that is correlated with the rate of current inactivation. Semi-quantitative PCR of cardiomyocytes at different days of culture reveals changes in the Ca(v)ß subunits expression pattern that are correlated with the rate of current inactivation and with Angiotensin II effect. Over-expression of individual b subunits in heterologous systems reveals that the magnitude of Angiotensin II inhibition is dependent on the Ca(v)ß subunit isoform, with Ca(v)ß(1b) containing channels being more strongly regulated. Ca(v)ß(2a) containing channels were insensitive to modulation and this effect was partially due to the N-terminal palmitoylation sites of this subunit. Moreover, PLC or diacylglycerol lipase inhibition prevents the Angiotensin II effect on L-type calcium channels, while PKC inhibition with chelerythrine does not, suggesting a role of arachidonic acid in this process. Finally, we show that in intact cardiomyocytes the magnitude of calcium transients on spontaneous beating cells is modulated by Angiotensin II in a Ca(v)ß subunit-dependent manner. These data demonstrate that Ca(v)ß subunits alter the magnitude of inhibition of L-type current by Angiotensin II.
Assuntos
Angiotensina II/metabolismo , Canais de Cálcio Tipo L/metabolismo , Regulação da Expressão Gênica/fisiologia , Potenciais da Membrana/fisiologia , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Angiotensina II/farmacologia , Animais , Antibacterianos/farmacologia , Ácido Araquidônico/metabolismo , Benzofenantridinas/farmacologia , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Lipase Lipoproteica/farmacologia , Lipoilação/efeitos dos fármacos , Lipoilação/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Miócitos Cardíacos/citologia , Fosfoinositídeo Fosfolipase C/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Vasoconstritores/metabolismo , Vasoconstritores/farmacologiaRESUMO
Calcium-binding protein S100A9 and its C-terminus peptide (mS100A9p) are anti-inflammatory and induce antinociception in rodents. We investigated the mechanisms involved in this effect, and whether they depend or not on the anti-inflammatory properties of mS100A9p. In mice, mS100A9p inhibited thermal and mechanical hyperalgesia and allodynia induced by either carrageenan or formalin, without interfering with paw edema. mS100A9p also inhibited myeloperoxidase activity (MPO), a marker of granulocyte infiltration, induced by carrageenan, but increased MPO after formalin intraplantar injection. The in vivo analgesic properties of mS100A9p were independent of opioid receptor activation. Calcium flux into dorsal root ganglia neurons induced by KCl was inhibited by mS100A9p, suggesting that this protein is able to inhibit signaling, in sensory neurons. The inhibitory effects of mS100A9p on primary afferent signaling were neither due to intracellular calcium store inhibition nor to calcium chelating properties. However, mS100A9p was able to inhibit calcium currents carried by transiently expressed N-type, but not L-type calcium channels, as demonstrated both by gene transfection techniques and electrophysiology. These data demonstrate that mS100A9p interferes with mechanisms involved in nociception, hyperalgesia and calcium signaling in sensory neurons, modulating primary afferent nociceptive signal by inhibiting activation of N-type voltage operated calcium channels.