Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 16: 657, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26330142

RESUMO

BACKGROUND: Lophophora williamsii (commonly named peyote) is a small, spineless cactus with psychoactive alkaloids, particularly mescaline. Peyote utilizes crassulacean acid metabolism (CAM), an alternative form of photosynthesis that exists in succulents such as cacti and other desert plants. Therefore, its transcriptome can be considered an important resource for future research focused on understanding how these plants make more efficient use of water in marginal environments and also for research focused on better understanding of the overall mechanisms leading to production of plant natural products and secondary metabolites. RESULTS: In this study, two cDNA libraries were generated from L. williamsii. These libraries, representing buttons (tops of stems) and roots were sequenced using different sequencing platforms (GS-FLX, GS-Junior and PGM, respectively). A total of 5,541,550 raw reads were generated, which were assembled into 63,704 unigenes with an average length of 564.04 bp. A total of 25,149 unigenes (62.19 %) was annotated using public databases. 681 unigenes were found to be differentially expressed when comparing the two libraries, where 400 were preferentially expressed in buttons and 281 in roots. Some of the major alkaloids, including mescaline, were identified by GC-MS and relevant metabolic pathways were reconstructed using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of preferentially expressed genes putatively involved in mescaline production were examined and validated by qRT-PCR. CONCLUSIONS: High throughput transcriptome sequencing (RNA-seq) analysis allowed us to efficiently identify candidate genes involved in mescaline biosynthetic pathway in L. williamsii; these included tyrosine/DOPA decarboxylase, hydroxylases, and O-methyltransferases. This study sets the theoretical foundation for bioassay design directed at confirming the participation of these genes in mescaline production.


Assuntos
Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mescalina/biossíntese , Sophora/genética , Transcriptoma/genética , Vias Biossintéticas/genética , Descarboxilação , Di-Hidroxifenilalanina/metabolismo , Hidroxilação , Funções Verossimilhança , Mescalina/química , Metiltransferases/metabolismo , Anotação de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sophora/enzimologia , Tirosina/metabolismo
2.
BMC Plant Biol ; 11: 101, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21639913

RESUMO

BACKGROUND: The carnivorous plant Utricularia gibba (bladderwort) is remarkable in having a minute genome, which at ca. 80 megabases is approximately half that of Arabidopsis. Bladderworts show an incredible diversity of forms surrounding a defined theme: tiny, bladder-like suction traps on terrestrial, epiphytic, or aquatic plants with a diversity of unusual vegetative forms. Utricularia plants, which are rootless, are also anomalous in physiological features (respiration and carbon distribution), and highly enhanced molecular evolutionary rates in chloroplast, mitochondrial and nuclear ribosomal sequences. Despite great interest in the genus, no genomic resources exist for Utricularia, and the substitution rate increase has received limited study. RESULTS: Here we describe the sequencing and analysis of the Utricularia gibba transcriptome. Three different organs were surveyed, the traps, the vegetative shoot bodies, and the inflorescence stems. We also examined the bladderwort transcriptome under diverse stress conditions. We detail aspects of functional classification, tissue similarity, nitrogen and phosphorus metabolism, respiration, DNA repair, and detoxification of reactive oxygen species (ROS). Long contigs of plastid and mitochondrial genomes, as well as sequences for 100 individual nuclear genes, were compared with those of other plants to better establish information on molecular evolutionary rates. CONCLUSION: The Utricularia transcriptome provides a detailed genomic window into processes occurring in a carnivorous plant. It contains a deep representation of the complex metabolic pathways that characterize a putative minimal plant genome, permitting its use as a source of genomic information to explore the structural, functional, and evolutionary diversity of the genus. Vegetative shoots and traps are the most similar organs by functional classification of their transcriptome, the traps expressing hydrolytic enzymes for prey digestion that were previously thought to be encoded by bacteria. Supporting physiological data, global gene expression analysis shows that traps significantly over-express genes involved in respiration and that phosphate uptake might occur mainly in traps, whereas nitrogen uptake could in part take place in vegetative parts. Expression of DNA repair and ROS detoxification enzymes may be indicative of a response to increased respiration. Finally, evidence from the bladderwort transcriptome, direct measurement of ROS in situ, and cross-species comparisons of organellar genomes and multiple nuclear genes supports the hypothesis that increased nucleotide substitution rates throughout the plant may be due to the mutagenic action of amplified ROS production.


Assuntos
Evolução Molecular , Perfilação da Expressão Gênica , Genoma de Planta , Magnoliopsida/genética , Brotos de Planta/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Respiração Celular , Reparo do DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Plantas/genética , Biblioteca Gênica , Genomas de Plastídeos , Inflorescência/genética , Inflorescência/metabolismo , Magnoliopsida/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA