Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569346

RESUMO

Osteosarcoma (OS) is an aggressive tumor with a rare incidence. Extended surgical resections are the prevalent treatment for OS, which may cause critical-size bone defects. These bone defects lead to dysfunction, weakening the post-surgical quality of patients' life. Hence, an ideal therapeutic agent for OS should simultaneously possess anti-cancer and bone repair capacities. Curcumin (CUR) has been reported in OS therapy and bone regeneration. However, it is not clear how CUR suppresses OS development. Conventionally, CUR is considered a natural antioxidant in line with its capacity to promote the nuclear translocation of a nuclear transcription factor, nuclear factor erythroid 2 (NRF2). After nuclear translocation, NRF2 can activate the transcription of some antioxidases, thereby circumventing excess reactive oxygen species (ROS) that are deleterious to cells. Intriguingly, this research demonstrated that, in vitro, 10 and 20 µM CUR increased the intracellular ROS in MG-63 cells, damaged cells' DNA, and finally caused apoptosis of MG-63 cells, although increased NRF2 protein level and the expression of NRF2-regulated antioxidase genes were identified in those two groups.


Assuntos
Neoplasias Ósseas , Curcumina , Osteossarcoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Curcumina/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Osteossarcoma/tratamento farmacológico , Apoptose , Neoplasias Ósseas/tratamento farmacológico
2.
Tissue Eng Part C Methods ; 29(6): 230-241, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253166

RESUMO

Bioreactor systems, for example, spinner flask and perfusion bioreactors, and cell-seeded three-dimensional (3D)-printed scaffolds are used in bone tissue engineering strategies to stimulate cells and produce bone tissue suitable for implantation into the patient. The construction of functional and clinically relevant bone graft using cell-seeded 3D-printed scaffolds within bioreactor systems is still a challenge. Bioreactor parameters, for example, fluid shear stress and nutrient transport, will crucially affect cell function on 3D-printed scaffolds. Therefore, fluid shear stress induced by spinner flask and perfusion bioreactors might differentially affect osteogenic responsiveness of pre-osteoblasts inside 3D-printed scaffolds. We designed and fabricated surface-modified 3D-printed poly-ɛ-caprolactone (PCL) scaffolds, as well as static, spinner flask, and perfusion bioreactors to determine fluid shear stress and osteogenic responsiveness of MC3T3-E1 pre-osteoblasts seeded on the scaffolds in the bioreactors using finite element (FE)-modeling and experiments. FE-modeling was used to quantify wall shear stress (WSS) distribution and magnitude inside 3D-printed PCL scaffolds within spinner flask and perfusion bioreactors. MC3T3-E1 pre-osteoblasts were seeded on NaOH surface-modified 3D-printed PCL scaffolds, and cultured in customized static, spinner flask, and perfusion bioreactors up to 7 days. The scaffolds' physicochemical properties and pre-osteoblast function were assessed experimentally. FE-modeling showed that spinner flask and perfusion bioreactors locally affected WSS distribution and magnitude inside the scaffolds. The WSS distribution was more homogeneous inside scaffolds in perfusion than in spinner flask bioreactors. The average WSS on scaffold-strand surfaces ranged from 0 to 6.5 mPa for spinner flask bioreactors, and from 0 to 4.1 mPa for perfusion bioreactors. Surface modification of scaffolds by NaOH resulted in a surface with a honeycomb-like pattern and increased surface roughness (1.6-fold), but decreased water contact angle (0.3-fold). Both spinner flask and perfusion bioreactors increased cell spreading, proliferation, and distribution throughout the scaffolds. Perfusion, but not spinner flask bioreactors more strongly enhanced collagen (2.2-fold) and calcium deposition (2.1-fold) throughout the scaffolds after 7 days compared with static bioreactors, likely due to uniform WSS-induced mechanical stimulation of the cells revealed by FE-modeling. In conclusion, our findings indicate the importance of using accurate FE models to estimate WSS and determine experimental conditions for designing cell-seeded 3D-printed scaffolds in bioreactor systems. Impact Statement The success of cell-seeded three-dimensional (3D)-printed scaffolds depends on cell stimulation by biomechanical/biochemical factors to produce bone tissue suitable for implantation into the patient. We designed and fabricated surface-modified 3D-printed poly-ɛ-caprolactone (PCL) scaffolds, as well as static, spinner flask, and perfusion bioreactors to determine wall shear stress (WSS) and osteogenic responsiveness of pre-osteoblasts seeded on the scaffolds using finite element (FE)-modeling and experiments. We found that cell-seeded 3D-printed PCL scaffolds within perfusion bioreactors more strongly enhanced osteogenic activity than within spinner flask bioreactors. Our results indicate the importance of using accurate FE-models to estimate WSS and determine experimental conditions for designing cell-seeded 3D-printed scaffolds in bioreactor systems.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Hidróxido de Sódio , Engenharia Tecidual/métodos , Reatores Biológicos , Perfusão
3.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614201

RESUMO

Once prostate cancer cells metastasize to bone, they perceive approximately 2 kPa compression. We hypothesize that 2 kPa compression stimulates the epithelial-to-mesenchymal transition (EMT) of prostate cancer cells and alters their production of paracrine signals to affect osteoclast and osteoblast behavior. Human DU145 prostate cancer cells were subjected to 2 kPa compression for 2 days. Compression decreased expression of 2 epithelial genes, 5 out of 13 mesenchymal genes, and increased 2 mesenchymal genes by DU145 cells, as quantified by qPCR. Conditioned medium (CM) of DU145 cells was added to human monocytes that were stimulated to differentiate into osteoclasts for 21 days. CM from compressed DU145 cells decreased osteoclast resorptive activity by 38% but did not affect osteoclast size and number compared to CM from non-compressed cells. CM was also added to human adipose stromal cells, grown in osteogenic medium. CM of compressed DU145 cells increased bone nodule production (Alizarin Red) by osteoblasts from four out of six donors. Compression did not affect IL6 or TNF-α production by PC DU145 cells. Our data suggest that compression affects EMT-related gene expression in DU145 cells, and alters their production of paracrine signals to decrease osteoclast resorptive activity while increasing mineralization by osteoblasts is donor dependent. This observation gives further insight in the altered behavior of PC cells upon mechanical stimuli, which could provide novel leads for therapies, preventing bone metastases.


Assuntos
Reabsorção Óssea , Neoplasias da Próstata , Masculino , Humanos , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Osso e Ossos/metabolismo , Reabsorção Óssea/metabolismo , Neoplasias da Próstata/metabolismo , Diferenciação Celular
4.
J Cancer Res Clin Oncol ; 149(8): 4173-4184, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36053327

RESUMO

OBJECTIVES: c-Met, a receptor tyrosine kinase, is involved in the growth, invasion and metastasis of a variety of cancers. In a set of cell lines from several solid tumors, a five-fold increase in c-Met expression after irradiation has been reported. This study aimed to assess if c-Met is likewise abundantly expressed in oral tongue squamous cell carcinoma (OTSCC) upon exposure to irradiation, followed by a Met-induced biological response. MATERIALS AND METHODS: Six OTSCC cell lines were exposed to gamma radiation doses of 2, 4, and 6 Gray. The changes in c-Met protein levels were assessed by western blot and flow cytometry. c-Met gene expression, cell migration, proliferation and cell cycle assays were performed as phenotypic readouts. RESULTS: Irradiation resulted in upregulation of c.Met in all cell lines with different time kinetics. On average the cells displayed minimal c-Met expression on their surface ranging from 5 to 30% of total protein. Abrupt downregulation of c-Met surface expression occurred one hour after radiation but recovered 48 h post-radiation. Intracellularly, the highest level of expression was found on day 5 after radiation exposure. Irradiation induced aggressive invasive potential of the cells as determined in cell migration assays, particularly in cell lines with the highest c-Met expression. CONCLUSIONS: These results provide novel insights into both intracellular and extracellular dynamics of c-Met expression profiles upon irradiation of OTSCC cells in vitro. It might also suggest that radiation enhances cell migration, indicative of invasiveness, through c-Met up-regulation, at least for certain types of OTSCC cells.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Neoplasias da Língua/genética , Neoplasias da Língua/radioterapia , Neoplasias da Língua/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética
5.
Front Bioeng Biotechnol ; 10: 917368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046674

RESUMO

Nowadays, radiotherapy is one of the most effective treatments for breast cancer. In order to overcome the radioresistance of cancer cells, radio-sensitizing agents can be used combined with irradiation to increase the therapeutic efficiency. Curcumin can enhance the radiosensitivity of cancer cells and decrease their viability by the accumulation of these cells in the G2 phase. The encapsulation of curcumin in a nanoniosomal delivery system increases aqueous solubility and bioavailability, resulting in increased radio sensitivity. The present study aimed to enhance the radio-sensitizing effect of the curcumin-containing nanoniosome (Cur-Nio) when combined with irradiation. Thus, curcumin (0.5 mg ml-1) was loaded on a PEGylated nanoniosome containing Tween 60, cholesterol, DOTAP, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) (at ratios of 70:30:10:5, respectively) by the thin-film hydration method. The particle size, zeta potential, entrapment efficiency, and drug-release rate of formulated nanoniosomes were determined. In order to assess cytotoxicity and apoptosis, different doses of irradiation along with various concentrations of free curcumin and Cur-Nio (single or in combination with irradiation) were treated with breast cancer cells. The particle size and zeta potential of Cur-Nio were reported to be 117.5 nm and -15.1 mV, respectively. The entrapment efficiency (EE%) and loading capacities were 72.3% and 6.68%, respectively. The drug-release rate during 6 h was 65.9%. Cell survival in the presence of curcumin at doses of 1 and 3 Gy showed a significant reduction compared with cells irradiated at 48 h and 72 h (p < 0.000). Also, the rate of cytotoxicity and apoptosis was significantly higher in cells treated with the combination of curcumin-containing nanoniosomes and irradiation in comparison with those treated with free curcumin. These findings indicate that the efficacy of pre-treatment with Cur-Nio as a radiosensitizer during radiotherapy enhances irradiation-induced breast cancer cell apoptosis and is a useful strategy to increase the effectiveness of breast cancer therapy.

6.
Cell J ; 24(7): 391-402, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36043407

RESUMO

OBJECTIVE: In this study, we aimed to develop new Lipo-niosomes based nanoparticles loaded with Amphotericin B (AmB) and Thymus Essential Oil (TEO) and test their effectiveness in the treatment of fungal-infected human adipose stem cells (hASCs). MATERIALS AND METHODS: In this experimental study, optimal formulation of AmB and TEO loaded lipo-niosome (based on lipid-surfactant thin-film hydration method) was chemically, and biologically characterized. Therefore, encapsulation capacity, drug release, size, and the survival rate of cells with different concentrations of free and encapsulated AmB/ TEO were evaluated using the MTT method, and its antifungal activity was compared with conventional AmB. RESULTS: Lipo-Niosome containing Tween 60 surfactant: cholesterol: Dipalmitoyl phosphatidylcholine (DPPC): Polyethylene glycol (PEG) with a ratio of 20:40:60:3 were chosen as optimal formulation. Lipo-Niosomes entrapment efficiency was 94.15%. The drug release rate after 24 hours was 52%, 54%, and 48% for Lipo-AmB, Lipo-TEO, and Lipo-AmB/TEO, respectively. Physical and chemical characteristics of the Lipo-Niosomes particles indicated size of 200 nm and a dispersion index of 0.32 with a Zeta potential of -24.56 mv. Furthermore, no chemical interaction between drugs and nano-carriers was observed. The cell viability of adipose mesenchymal stem cells exposed to 50 µg/ml of free AmB, free TEO, and free AmB/TEO was 13.4, 58, and 36.9%, respectively. Whereas the toxicity of the encapsulated formulas of these drugs was 48.9, 70.8, and 58.3% respectively. The toxicity of nanoparticles was very low (8.5%) at this concentration. Fluorescence microscopic images showed that the antifungal activity of Lipo-AmB/ TEO was significantly higher than free formulas of AmB, TEO, and AmB/TEO. CONCLUSION: In this study, we investigated the efficacy of the TEO/AmB combination, in both free and encapsulatedniosomal form, on the growth of fungal infected-hASCs. The results showed that the AmB/TEO-loaded Lipo-Niosomes can be suggested as a new efficient anti-fungal nano-system for patients treated with hASCs.

7.
Front Cell Dev Biol ; 9: 740783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869325

RESUMO

Osteosarcoma (OS), a primary malignant bone tumor, stems from bone marrow-derived mesenchymal stem cells (BMSCs) and/or committed osteoblast precursors. Distant metastases, in particular pulmonary and skeletal metastases, are common in patients with OS. Moreover, extensive resection of the primary tumor and bone metastases usually leads to bone defects in these patients. Bone morphogenic protein-2 (BMP-2) has been widely applied in bone regeneration with the rationale that BMP-2 promotes osteoblastic differentiation of BMSCs. Thus, BMP-2 might be useful after OS resection to repair bone defects. However, the potential tumorigenicity of BMP-2 remains a concern that has impeded the administration of BMP-2 in patients with OS and in populations susceptible to OS with severe bone deficiency (e.g., in patients with genetic mutation diseases and aberrant activities of bone metabolism). In fact, some studies have drawn the opposite conclusion about the effect of BMP-2 on OS progression. Given the roles of BMSCs in the origination of OS and osteogenesis, we hypothesized that the responses of BMSCs to BMP-2 in the tumor milieu may be responsible for OS development. This review focuses on the relationship among BMSCs, BMP-2, and OS cells; a better understanding of this relationship may elucidate the accurate mechanisms of actions of BMP-2 in osteosarcomagenesis and thereby pave the way for clinically safer and broader administration of BMP-2 in the future. For example, a low dosage of and a slow-release delivery strategy for BMP-2 are potential topics for exploration to treat OS.

8.
Molecules ; 26(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684714

RESUMO

Current cell-based bone tissue regeneration strategies cannot cover large bone defects. K-carrageenan is a highly hydrophilic and biocompatible seaweed-derived sulfated polysaccharide, that has been proposed as a promising candidate for tissue engineering applications. Whether κ-carrageenan can be used to enhance bone regeneration is still unclear. In this study, we aimed to investigate whether κ-carrageenan has osteogenic potential by testing its effect on pre-osteoblast proliferation and osteogenic differentiation in vitro. Treatment with κ-carrageenan (0.5 and 2 mg/mL) increased both MC3T3-E1 pre-osteoblast adhesion and spreading at 1 h. K-carrageenan (0.125-2 mg/mL) dose-dependently increased pre-osteoblast proliferation and metabolic activity, with a maximum effect at 2 mg/mL at day three. K-carrageenan (0.5 and 2 mg/mL) increased osteogenic differentiation, as shown by enhanced alkaline phosphatase activity (1.8-fold increase at 2 mg/mL) at day four, and matrix mineralization (6.2-fold increase at 2 mg/mL) at day 21. K-carrageenan enhanced osteogenic gene expression (Opn, Dmp1, and Mepe) at day 14 and 21. In conclusion, κ-carrageenan promoted MC3T3-E1 pre-osteoblast adhesion and spreading, metabolic activity, proliferation, and osteogenic differentiation, suggesting that κ-carrageenan is a potential osteogenic inductive factor for clinical application to enhance bone regeneration.


Assuntos
Regeneração Óssea/fisiologia , Carragenina/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Regeneração Óssea/efeitos dos fármacos , Carragenina/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/fisiologia , Engenharia Tecidual/métodos
9.
Physiol Rep ; 9(12): e14917, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34174021

RESUMO

Bone mass increases after error-loading, even in the absence of osteocytes. Loaded osteoblasts may produce a combination of growth factors affecting adjacent osteoblast differentiation. We hypothesized that osteoblasts respond to a single load in the short-term (minutes) by changing F-actin stress fiber distribution, in the intermediate-term (hours) by signaling molecule production, and in the long-term (days) by differentiation. Furthermore, growth factors produced during and after mechanical loading by pulsating fluid flow (PFF) will affect osteogenic differentiation. MC3T3-E1 pre-osteoblasts were either/not stimulated by 60 min PFF (amplitude, 1.0 Pa; frequency, 1 Hz; peak shear stress rate, 6.5 Pa/s) followed by 0-6 h, or 21/28 days of post-incubation without PFF. Computational analysis revealed that PFF immediately changed distribution and magnitude of fluid dynamics over an adherent pre-osteoblast inside a parallel-plate flow chamber (immediate impact). Within 60 min, PFF increased nitric oxide production (5.3-fold), altered actin distribution, but did not affect cell pseudopodia length and cell orientation (initial downstream impact). PFF transiently stimulated Fgf2, Runx2, Ocn, Dmp1, and Col1⍺1 gene expression between 0 and 6 h after PFF cessation. PFF did not affect alkaline phosphatase nor collagen production after 21 days, but altered mineralization after 28 days. In conclusion, a single bout of PFF with indirect associated release of biochemical factors, stimulates osteoblast differentiation in the long-term, which may explain enhanced bone formation resulting from mechanical stimuli.


Assuntos
Diferenciação Celular/fisiologia , Osteoblastos/fisiologia , Fluxo Pulsátil/fisiologia , Actinas/metabolismo , Actinas/fisiologia , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Colágeno/metabolismo , Análise de Elementos Finitos , Expressão Gênica , Camundongos , Óxido Nítrico/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia
10.
Iran Biomed J ; 25(2): 78-87, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33461289

RESUMO

Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using three-dimensional printing (3DP). Herein, we aimed to determine whether the much tighter control of microstructure of 3DP poly(lactic-co-glycolic) acid/ß-tricalcium phosphate (PLGA/ß-TCP) scaffolds is more effective in promoting osteogenesis than porous scaffolds produced by solvent casting/porogen leaching. Methods: Physical and mechanical properties of porous and 3DP scaffolds were studied. The response of pre-osteoblasts to the scaffolds was analyzed after 14 days. Results: TThe 3DP scaffolds had a smoother surface (Ra: 22 ± 3 µm) relative to the highly rough surface of porous scaffolds (Ra: 110 ± 15 µm). Water contact angle was 112 ± 4° on porous and 76 ± 6° on 3DP scaffolds. Porous and 3DP scaffolds had the pore size of 408 ± 90 and 315 ± 17 µm and porosity of 85 ± 5% and 39 ± 7%, respectively. Compressive strength of 3DP scaffolds (4.0 ± 0.3 MPa) was higher than porous scaffolds (1.7 ± 0.2 MPa). Collagenous matrix deposition was similar on both scaffolds. Cells proliferated from day 1 to day 14 by fourfold in porous and by 3.8-fold in 3DP scaffolds. Alkaline phosphatase (ALP) activity was 21-fold higher in 3DP scaffolds than porous scaffolds. Conclusion: The 3DP scaffolds show enhanced mechanical properties and ALP activity compared to porous scaffolds in vitro, suggesting that 3DP PLGA/ß-TCP scaffolds are possibly more favorable for bone formation.


Assuntos
Regeneração Óssea/fisiologia , Osteoblastos/citologia , Osteogênese , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Animais , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/química , Linhagem Celular , Forma Celular/efeitos dos fármacos , Colágeno/farmacologia , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Porosidade , Impressão Tridimensional
11.
Comput Biol Med ; 124: 103826, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798924

RESUMO

Fluid flow dynamics and oxygen-concentration in 3D-printed scaffolds within perfusion bioreactors are sensitive to controllable bioreactor parameters such as inlet flow rate. Here we aimed to determine fluid flow dynamics, oxygen-concentration, and cell proliferation and distribution in 3D-printed scaffolds as a result of different inlet flow rates of perfusion bioreactors using experiments and finite element modeling. Pre-osteoblasts were treated with 1 h pulsating fluid flow with low (0.8 Pa; PFFlow) or high peak shear stress (6.5 Pa; PFFhigh), and nitric oxide (NO) production was measured to validate shear stress sensitivity. Computational analysis was performed to determine fluid flow between 3D-scaffold-strands at three inlet flow rates (0.02, 0.1, 0.5 ml/min) during 5 days. MC3T3-E1 pre-osteoblast proliferation, matrix production, and oxygen-consumption in response to fluid flow in 3D-printed scaffolds inside a perfusion bioreactor were experimentally assessed. PFFhigh more strongly stimulated NO production by pre-osteoblasts than PFFlow. 3D-simulation demonstrated that dependent on inlet flow rate, fluid velocity reached a maximum (50-1200 µm/s) between scaffold-strands, and fluid shear stress (0.5-4 mPa) and wall shear stress (0.5-20 mPa) on scaffold-strands surfaces. At all inlet flow rates, gauge fluid pressure and oxygen-concentration were similar. The simulated cell proliferation and distribution, and oxygen-concentration data were in good agreement with the experimental results. In conclusion, varying a perfusion bioreactor's inlet flow rate locally affects fluid velocity, fluid shear stress, and wall shear stress inside 3D-printed scaffolds, but not gauge fluid pressure, and oxygen-concentration, which seems crucial for optimized bone tissue engineering strategies using bioreactors, scaffolds, and cells.


Assuntos
Reatores Biológicos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Baías , Perfusão
12.
J Mech Behav Biomed Mater ; 104: 103638, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174396

RESUMO

In bone tissue engineering, prediction of forces induced to the native bone during normal functioning is important in the design, fabrication, and integration of a scaffold with the host. The aim of this study was to customize the mechanical properties of a layer-by-layer 3D-printed poly(ϵ-caprolactone) (PCL) scaffold estimated by finite element (FE) modeling in order to match the requirements of the defect, to prevent mechanical failure, and ensure optimal integration with the surrounding tissue. Forces and torques induced on the mandibular symphysis during jaw opening and closing were predicted by FE modeling. Based on the predicted forces, homogeneous-structured PCL scaffolds with 3 different void sizes (0.3, 0.6, and 0.9 mm) were designed and 3D-printed using an extrusion based 3D-bioprinter. In addition, 2 gradient-structured scaffolds were designed and 3D-printed. The first gradient scaffold contained 2 regions (0.3 mm and 0.6 mm void size in the upper and lower half, respectively), whereas the second gradient scaffold contained 3 regions (void sizes of 0.3, 0.6, and 0.9 mm in the upper, middle and lower third, respectively). Scaffolds were tested for their compressive and tensile strength in the upper and lower halves. The actual void size of the homogeneous scaffolds with designed void size of 0.3, 0.6, and 0.9 mm was 0.20, 0.59, and 0.95 mm, respectively. FE modeling showed that during opening and closing of the jaw, the highest force induced on the symphysis was a compressive force in the transverse direction. The compressive force was induced throughout the symphyseal line and reduced from top (362.5 N, compressive force) to bottom (107.5 N, tensile force) of the symphysis. Compressive and tensile strength of homogeneous scaffolds decreased by 1.4-fold to 3-fold with increasing scaffold void size. Both gradient scaffolds had higher compressive strength in the upper half (2 region-gradient scaffold: 4.9 MPa; 3 region-gradient scaffold: 4.1 MPa) compared with the lower half (2 region-gradient scaffold: 2.5 MPa; 3 region-gradient scaffold: 2.7 MPa) of the scaffold. 3D-printed PCL scaffolds had higher compressive strength in the scaffold layer-by-layer building direction compared with the side direction, and a very low tensile strength in the scaffold layer-by-layer building direction. Fluid shear stress and fluid pressure distribution in the gradient scaffolds were more homogeneous than in the 0.3 mm void size scaffold and similar to the 0.6 mm and 0.9 mm void size scaffolds. In conclusion, these data show that the mechanical properties of 3D-printed PCL scaffolds can be tailored based on the predicted forces on the mandibular symphysis. These 3D-printed PCL scaffolds had different mechanical properties in scaffold building direction compared with the side direction, which should be taken into account when placing the scaffold in the defect site. Our findings might have implications for improved performance and integration of scaffolds with native tissue.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Caproatos , Força Compressiva , Lactonas , Mandíbula , Poliésteres , Porosidade , Impressão Tridimensional
13.
Cell J ; 22(3): 293-301, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31863654

RESUMO

OBJECTIVE: This study investigated whether short stimulation (30 minutes) of human adipose stem cells (hASCs) with 1,25-dihydroxyvitamin D3 (calcitriol or 1,25-(OH)2VitD3), fitting within the surgical procedure time frame, suffices to induce osteogenic differentiation, and compared this with continuous treatment with 1,25-(OH)2VitD3. MATERIALS AND METHODS: In this experimental study, hASCs were pretreated with/without 10 nM calcitriol for 30 minutes, seeded on biphasic calcium phosphate (BCP), and cultured for 3 weeks with/without 1,25-(OH)2VitD3. Cell attachment was determined 30 minutes after cell seeding. AlamarBlue assay, alkaline phosphatase (ALP) assay, ALP staining, real-time polymerase chain reaction (PCR), and protein assay were used to evaluate the effect of short calcitriol pretreatment on proliferation and osteogenic differentiation of hASCs up to 3 weeks. RESULTS: Pretreatment with 1,25-(OH)2VitD3 enhanced the attachment of hASCs to BCP by 1.5-fold compared to nontreated cells and increased the proliferation by 3.5-fold at day 14, and 2.6-fold at day 21. In contrast, continuous treatment increased the proliferation by 1.7-fold only at day 14. After 2 weeks, ALP activity was increased by 18.5-fold when hASCs were pretreated with 1,25-(OH)2VitD3 for 30 minutes but increased only 2.6-fold when compared with its continuous counterpart. Moreover, after 14 days, pretreatment resulted in significant upregulation of the osteogenic markers RUNX2 and SPARC by 3.6-fold and 2.2-fold, respectively, while this was not observed upon continuous treatment. Finally, 30 minutes pretreatment of hASCs with 1,25-(OH)2VitD3 increased VEGF189 expression, which may contribute to the process of angiogenesis. CONCLUSION: This study is the first research showing that 30 minutes pretreatment of hASCs with 1,25-(OH)2VitD3, not only enhanced cell attachment to the scaffold at seeding time, but also promoted the proliferation and osteogenic differentiation of hASCs more strongly than continuous treatment, suggesting that short pre-treatment with 1,25-(OH)2VitD3 is a promising approach for the regeneration of bones in a one-step surgical procedure.

14.
Int J Mol Sci ; 20(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067826

RESUMO

The temporomandibular joint (TMJ), which differs anatomically and biochemically from hyaline cartilage-covered joints, is an under-recognized joint in arthritic disease, even though TMJ damage can have deleterious effects on physical appearance, pain and function. Here, we analyzed the effect of IL-1ß, a cytokine highly expressed in arthritic joints, on TMJ fibrocartilage-derived cells, and we investigated the modulatory effect of mechanical loading on IL-1ß-induced expression of catabolic enzymes. TMJ cartilage degradation was analyzed in 8-11-week-old mice deficient for IL-1 receptor antagonist (IL-1RA-/-) and wild-type controls. Cells were isolated from the juvenile porcine condyle, fossa, and disc, grown in agarose gels, and subjected to IL-1ß (0.1-10 ng/mL) for 6 or 24 h. Expression of catabolic enzymes (ADAMTS and MMPs) was quantified by RT-qPCR and immunohistochemistry. Porcine condylar cells were stimulated with IL-1ß for 12 h with IL-1ß, followed by 8 h of 6% dynamic mechanical (tensile) strain, and gene expression of MMPs was quantified. Early signs of condylar cartilage damage were apparent in IL-1RA-/- mice. In porcine cells, IL-1ß strongly increased expression of the aggrecanases ADAMTS4 and ADAMTS5 by fibrochondrocytes from the fossa (13-fold and 7-fold) and enhanced the number of MMP-13 protein-expressing condylar cells (8-fold). Mechanical loading significantly lowered (3-fold) IL-1ß-induced MMP-13 gene expression by condylar fibrochondrocytes. IL-1ß induces TMJ condylar cartilage damage, possibly by enhancing MMP-13 production. Mechanical loading reduces IL-1ß-induced MMP-13 gene expression, suggesting that mechanical stimuli may prevent cartilage damage of the TMJ in arthritic patients.


Assuntos
Artrite Juvenil/metabolismo , Condrócitos/efeitos dos fármacos , Interleucina-1beta/farmacologia , Côndilo Mandibular/metabolismo , Metaloproteinase 13 da Matriz/genética , Articulação Temporomandibular/metabolismo , Proteína ADAMTS4 , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Animais , Células Cultivadas , Condrócitos/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Interleucina-1beta/metabolismo , Côndilo Mandibular/patologia , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Estresse Mecânico , Suínos , Articulação Temporomandibular/patologia
15.
Acta Biomater ; 84: 159-168, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30471477

RESUMO

The extracellular matrix of fascia-like tissues is a resilient network of collagenous fibers that withstand the forces of daily life. When overstretched, the matrix may tear, with serious consequences like pelvic organ prolapse (POP). Synthetic implants can provide mechanical support and evoke a host response that induces new matrix production, thus reinforcing the fascia. However, there is considerable risk of scar formation and tissue contraction which result in severe complications. Matrix producing fibroblasts are both mechanosensitive and contractile; their behavior depends on the implant's surface texture and mechanical straining. Here we investigate the effect of both in a newly-designed experimental setting. Electrospun scaffolds of Nylon and PLGA/PCL and a non-porous PLGA/PCL film were clamped like a drumhead and seeded with fibroblasts of POP patients. Upon confluency, scaffolds were cyclically strained for 24 or 72 h at 10% and 0.2 Hz, mimicking gentle breathing. Non-loading condition was control. Strained fibroblasts loosened their actin-fibers, thereby preventing myofibroblastic differentiation. Mechanical loading upregulated genes involved in matrix synthesis (collagen I, III, V and elastin), matrix remodeling (α-SMA, TGF-ß1, MMP-2) and inflammation (COX-2, TNF-α, IL8, IL1-ß). Collagen genes were expressed earlier under mechanical loading and the ratio of I/III collagen increased. Matrix synthesis and remodeling were stronger on the electrospun scaffolds, while inflammation was more prominent on the non-porous film. Our findings indicate that mechanical straining enhances the regenerative potential of fibroblasts for the regeneration of fascia-type tissues and limit the risk of scar tissue formation. These effects are stronger on an electrospun texture. STATEMENT OF SIGNIFICANCE: Pelvic organ prolapsed is a dysfunctional disease in female pelvic floor that can reduce the quality of life women. Currently, trans-vaginal knitted meshes are used to anatomically correct the dysfunctional tissues. However, the meshes can create sever adverse complications in some patients (e.g. chronic pain) in longer-term. As an alternative, we developed nanofibrous matrices by electrospinning based on different materials. We designed an in-vitro culture system and subjected cell-seeded matrices to cyclic mechanical loading. Results revealed that gentle straining of POP-cells on electrospun matrices, advances their regenerative potential at morphological and gene expression levels. Our findings, provide a proof-of-concept for using electrospun matrices as an alternative implant for pelvic floor repair, given that the parameters are designed efficiently and safely.


Assuntos
Fibroblastos/metabolismo , Regeneração , Telas Cirúrgicas , Alicerces Teciduais/química , Feminino , Fibroblastos/patologia , Humanos , Prolapso de Órgão Pélvico/metabolismo , Prolapso de Órgão Pélvico/patologia , Prolapso de Órgão Pélvico/cirurgia
16.
Biomed Mater ; 14(1): 015008, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30421722

RESUMO

In bone tissue engineering, the intrinsic hydrophobicity and surface smoothness of three-dimensional (3D)-printed poly(ε-caprolactone) scaffolds hamper cell attachment, proliferation and differentiation. This intrinsic hydrophobicity of poly(ε-caprolactone) can be overcome by surface modifications, such as surface chemical modification or immobilization of biologically active molecules on the surface. Moreover, surface chemical modification may alter surface smoothness. Whether surface chemical modification or immobilization of a biologically active molecule on the surface is more effective to enhance pre-osteoblast proliferation and differentiation is currently unknown. Therefore, we aimed to investigate the osteogenic response of MC3T3-E1 pre-osteoblasts to chemically surface-modified and RGD-immobilized 3D-printed poly(ε-caprolactone) scaffolds. Poly(ε-caprolactone) scaffolds were 3D-printed consisting of strands deposited layer by layer with alternating 0°/90° lay-down pattern. 3D-printed poly(ε-caprolactone) scaffolds were surface-modified by either chemical modification using 3 M sodium hydroxide (NaOH) for 24 or 72 h, or by RGD-immobilization. Strands were visualized by scanning electron microscopy. MC3T3-E1 pre-osteoblasts were seeded onto the scaffolds and cultured up to 14 d. The strands of the unmodified poly(ε-caprolactone) scaffold had a smooth surface. NaOH treatment changed the scaffold surface topography from smooth to a honeycomb-like surface pattern, while RGD immobilization did not alter the surface topography. MC3T3-E1 pre-osteoblast seeding efficiency was similar (44%-54%) on all scaffolds after 12 h. Cell proliferation increased from day 1 to day 14 in unmodified controls (1.9-fold), 24 h NaOH-treated scaffolds (3-fold), 72 h NaOH-treated scaffolds (2.2-fold), and RGD-immobilized scaffolds (4.5-fold). At day 14, increased collagenous matrix deposition was achieved only on 24 h NaOH-treated (1.8-fold) and RGD-immobilized (2.2-fold) scaffolds compared to unmodified controls. Moreover, 24 h, but not 72 h, NaOH-treated scaffolds, increased alkaline phosphatase activity by 5-fold, while the increase by RGD immobilization was only 2.5-fold. Only 24 h NaOH-treated scaffolds enhanced mineralization (2.0-fold) compared to unmodified controls. In conclusion, RGD immobilization (0.011 µg mg-1 scaffold) on the surface and 24 h NaOH treatment of the surface of 3D-printed PCL scaffold both enhance pre-osteoblast proliferation and matrix deposition while only 24 h NaOH treatment results in increased osteogenic activity, making it the treatment of choice to promote bone formation by osteogenic cells.


Assuntos
Cálcio/química , Oligopeptídeos/química , Osteoblastos/metabolismo , Poliésteres/química , Alicerces Teciduais/química , Células 3T3 , Animais , Osso e Ossos , Caproatos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Lactonas , Camundongos , Osteogênese/fisiologia , Impressão Tridimensional , Engenharia Tecidual
17.
Mater Sci Eng C Mater Biol Appl ; 93: 790-799, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274113

RESUMO

OBJECTIVE: Bone tissue engineering (BTE) faces a major challenge with cell viability after implantation of a construct due to lack of functional vasculature within the implant. Human bone marrow derived mesenchymal stem cells (hBMSCs) have the potential to undergo transdifferentiation towards an endothelial cell phenotype, which may be appropriate for BTE in conjunction with the appropriate scaffolds and microenvironment. HYPOTHESIS AND METHODS: We hypothesized that slow delivery of vascular endothelial growth factor (VEGF) by using nanoparticles in combination with osteogenic stimuli might enhance both osteogenic and angiogenic differentiation of angiogenic primed hBMSCs cultured in an osteogenic microenvironment. Therefore, we developed a new strategy to enhance vascularization in BTE in vitro by synthesis of smart temperature sensitive poly(N­isopropylacrylamide) (PNIPAM) nanoparticles. We used PNIPAM nanoparticles loaded with collagen to investigate their ability to deliver VEGF for both angiogenic and osteogenic differentiation. RESULTS: We used the free radical polymerization technique to synthesize PNIPAM nanoparticles, which had particle sizes of approximately 100 nm at 37 °C and LCST of 30-32 °C. The cumulative VEGF release after 72 h for VEGF loaded PNIPAM (VEGF-PNIPAM) nanoparticles was 70%; for VEGF-PNIPAM loaded collagen hydrogels, it was 23%, which indicated slower release of VEGF in the VEGF-PNIPAM loaded collagen system. Immunocytochemistry (ICC) and inverted microscope visualization confirmed endothelial differentiation and capillary-like tube formation in the osteogenic culture medium after 14 days. Quantitative real-time polymerase chain reaction (QRT-PCR) also confirmed expressions of collagen type I (Col I), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN) osteogenic markers along with expressions of platelet-endothelial cell adhesion molecule-1 (CD31), von Willebrand factor (vWF), and kinase insert domain receptor (KDR) angiogenic markers. Our data clearly showed that VEGF released from PNIPAM nanoparticles and VEGF-PNIPAM loaded collagen hydrogel could significantly contribute to the quality of engineered bone tissue.


Assuntos
Células da Medula Óssea/metabolismo , Portadores de Fármacos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular , Células da Medula Óssea/citologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/farmacologia
18.
Int J Nanomedicine ; 13: 3853-3866, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013340

RESUMO

PURPOSE: Osteosarcoma (OS) mostly affects children and young adults, and has only a 20%-30% 5-year survival rate when metastasized. We aimed to create dual-targeted (extracellular against EphA2 and intracellular against JNK-interacting protein 1 [JIP1]), doxorubicin (DOX)-loaded liposomes to treat OS metastatic disease. MATERIALS AND METHODS: Cationic liposomes contained N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate (DOTAP), cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and distearoyl-phosphatidylethanolamine-methyl-poly(ethylene glycol) (DSPE-mPEG) conjugate. EphA2 targeting was accomplished by conjugating YSA peptide to DSPE-mPEG. Vesicles were subsequently loaded with DOX and JIP1 siRNA. RESULTS: Characteristics assessment showed that 1) size of the bilayered particles was 109 nm; 2) DOX loading efficiency was 87%; 3) siRNA could be successfully loaded at a liposome:siRNA ratio of >24:1; and 4) the zeta potential was 18.47 mV. Tumor-mimicking pH conditions exhibited 80% siRNA and 50.7% DOX sustained release from the particles. Stability studies ensured the protection of siRNA against degradation in serum. OS cell lines showed increased and more pericellular/nuclear localizations when using targeted vesicles. Nontargeted and targeted codelivery caused 70.5% and 78.6% cytotoxicity in OS cells, respectively (free DOX: 50%). Targeted codelivery resulted in 42% reduction in the siRNA target, JIP1 mRNA, and 46% decrease in JIP1 levels. CONCLUSION: Our dual-targeted, DOX-loaded liposomes enhance toxicity toward OS cells and may be effective for the treatment of metastatic OS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doxorrubicina/análogos & derivados , Resistência a Múltiplos Medicamentos , Nanopartículas/química , Osteossarcoma/tratamento farmacológico , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , RNA Interferente Pequeno/administração & dosagem , Receptor EphA2/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Cátions , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Osteossarcoma/genética , Osteossarcoma/patologia , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , RNA Interferente Pequeno/genética , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Sci Rep ; 8(1): 8094, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802279

RESUMO

The pathophysiology of aortic aneurysms (AA) is far from being understood. One reason for this lack of understanding is basic research being constrained to fixated cells or isolated cell cultures, by which cell-to-cell and cell-to-matrix communications are missed. We present a new, in vitro method for extended preservation of aortic wall sections to study pathophysiological processes. Intraoperatively harvested, live aortic specimens were cut into 150 µm sections and cultured. Viability was quantified up to 92 days using immunofluorescence. Cell types were characterized using immunostaining. After 14 days, individual cells of enzymatically digested tissues were examined for cell type and viability. Analysis of AA sections (N = 8) showed a viability of 40% at 7 days and smooth muscle cells, leukocytes, and macrophages were observed. Protocol optimization (N = 4) showed higher stable viability at day 62 and proliferation of new cells at day 92. Digested tissues showed different cell types and a viability up to 75% at day 14. Aortic tissue viability can be preserved until at least 62 days after harvesting. Cultured tissues can be digested into viable single cells for additional techniques. Present protocol provides an appropriate ex vivo setting to discover and study pathways and mechanisms in cultured human aneurysmal aortic tissue.


Assuntos
Aorta/patologia , Aorta/fisiopatologia , Aorta/metabolismo , Aneurisma Aórtico/patologia , Aneurisma Aórtico/fisiopatologia , Regulação da Expressão Gênica , Humanos , Sobrevivência de Tecidos
20.
Artif Cells Nanomed Biotechnol ; 46(sup1): 684-692, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29475393

RESUMO

Cationic liposomes have been investigated as non-viral vectors for gene delivery for more than a decade to overcome challenges associated with viral gene delivery. However, due to instability of liposomes, siRNA delivery is still a serious problem. In this study, we developed stealth PEGylated liposome formulations and focused on the effects of PEGylated liposomes on parameters related to size, zeta potential, polydispersity index, siRNA-loading efficiency and long-term stability of the siRNA-liposome complex. We were able to generate siRNA lipoplexes that could be very efficiently loaded, did not aggregate, could be stored at 4 °C for at least 6 months with only marginal release (1-5%) of siRNA and enhanced intracellular delivery of siRNA. Moreover, we could demonstrate that PEGylation positively contributed to all these parameters compared to liposomes, which were not PEGylated. The prepared lipoplex was successfully silenced J1P1 expression in MG-63 osteosarcoma cell line. In conclusion, our novel PEGylated liposomes have high potential for systemic delivery of siRNA and can improve in vivo stability of free siRNA and also siRNA lipoplexes.


Assuntos
Lipossomos/química , Nanoestruturas/química , Polietilenoglicóis/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Humanos , Polietilenoglicóis/toxicidade , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...