Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273395

RESUMO

As SARS-CoV-2 continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses, and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta or Delta variants, we show that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta plus (Delta+) which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+ and Omicron, which all possess the N417 residue. We isolated a N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D mAb utilized the IGHV3-23*01 germline gene and had similar somatic hypermutations compared to previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targetting escape mutations such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. ImportanceThe evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring varying immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants, and to define shared epitopes. We show that Beta and Delta infection resulted in antibody responses that were more cross-reactive compared to the original D614G variant, but each with differing patterns of cross-reactivity. We further isolated an antibody from Beta infection, which targeted the N417 site, enabling cross-neutralization of Beta, Delta+ and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270789

RESUMO

The SARS-CoV-2 Omicron variant escapes neutralizing antibodies elicited by vaccines or infection. However, whether Omicron triggers cross-reactive humoral responses to other variants of concern (VOCs) remains unknown. We use plasma from 20 unvaccinated and seven vaccinated individuals infected by Omicron BA.1 to test binding, Fc effector function and neutralization against VOCs. In unvaccinated individuals, Fc effector function and binding antibodies target Omicron and other VOCs at comparable levels. However, Omicron BA.1-triggered neutralization is not extensively cross-reactive for VOCs (14 to 31-fold titer reduction) and we observe 4-fold decreased titers against Omicron BA.2. In contrast, vaccination followed by breakthrough Omicron infection was associated with improved cross-neutralization of VOCs, with titers exceeding 1:2,100. This has important implications for vulnerability of unvaccinated Omicron-infected individuals to reinfection by circulating and emerging VOCs. While Omicron-based immunogens may be adequate boosters, they are unlikely to be superior to existing vaccines for priming in SARS-CoV-2 naive individuals.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266049

RESUMO

The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in severely ill, hospitalized donors, and are cross-reactive against diverse SARS-CoV-2 variants, including the extremely neutralization resistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265853

RESUMO

SARS-CoV-2 variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with decreased disease severity and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta infection triggered responses with significantly improved Fc cross-reactivity against global VOCs compared to either D614G infected or Ad26.COV2.S vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence impacts Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262207

RESUMO

BackgroundAs at end of July 2021, the COVID-19 pandemic has been less severe in sub-Saharan Africa than elsewhere. In Malawi, there have been two subsequent epidemic waves. We therefore aimed to describe the dynamics of SARS-CoV-2 exposure in Malawi. MethodsWe measured the seroprevalence of anti-SARS-CoV-2 antibodies among randomly selected blood donor sera in Malawi from January 2020 to February 2021. In a subset, we also assesed in vitro neutralisation against the original variant (D614G WT) and the Beta variant. FindingsA total of 3586 samples were selected from the blood donor database, of which 2685 (74.9%) were male and 3132 (87.3%) were aged 20-49 years. Of the total, 469 (13.1%) were seropositive. Seropositivity was highest in October 2020 (15.7%) and February 2021 (49.7%) reflecting the two epidemic waves. Unlike the first wave, both urban and rural areas had high seropositivity by February 2021, Balaka (rural, 37.5%), Blantyre (urban, 54.8%), Lilongwe (urban, 54.5%) and Mzuzu (urban, 57.5%). First wave sera showed potent in vitro neutralisation activity against the original variant (78%[7/9]) but not the Beta variant (22% [2/9]). Second wave sera potently neutralised the Beta variant (73% [8/11]). InterpretationThe findings confirm extensive SARS-CoV-2 exposure in Malawi over two epidemic waves with likely poor cross-protection to reinfection from the first on the second wave. Since prior exposure augments COVID-19 vaccine immunity, prioritising administration of the first dose in high SARS-CoV-2 exposure settings could maximise the benefit of the limited available vaccines in Malawi and the region. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSWe searched PubMed on August 16, 2021, with no language restrictions, for titles and abstracts published between Jan 1, 2020, and August 16, 2021, using the search terms: "SARS-CoV-2 seroprevalence in Africa"[Title/Abstract]) OR "SARS-CoV-2 seroprevalence in blood donors" [Title/Abstract] OR "SARS-CoV-2 seroprevalence in Malawi", and found 15 records. There are limited SARS-CoV-2 seroprevalence studies in sub Saharan Africa, however the few that are available report high seroprevalence than can be deduced from the respective national reported COVID-19 cases and deaths. Only two published SARS-CoV-2 serosurveys were done on blood donors, from Kenya and Madagascar. Blood donor serosurveys have been recommended by the WHO as an important tool for assessing the spread of SARS-CoV-2 and estimating the burden of COVID-19 pandemic. Added value of this studyUnlike previous SARS-CoV-2 blood donor serosurveys in African populations that were conducted for a maximum period of 9 months, our study covers a full year from January 2020 to February 2021, capturing potential introduction of SARS-CoV-2 into Malawi as well as the two epidemic waves. This study provides evidence against the speculation that SARS-CoV-2 had been circulating more widely in sub-Saharan Africa before the first detected cases. It also provides supporting evidence suggesting that the Beta variant was the likely driver of the second wave that resulted in high SARS-CoV-2 seropositivity in January to February 2021 in Malawi. Implications of all the available evidenceOur results show extensive community transmission of SARS-CoV-2 in Malawi as reflected in the blood donors serosurvey, with almost half the sample population being seropositive for anti-SARS-CoV-2 antibodies by February 2021. This has implications for COVID-19 vaccination policy in sub-Saharan Africa (SSA), where there are limited available vaccine doses. Considering that prior exposure to SARS-CoV-2 augments COVID-19 vaccine immunity, strategies to maximise administration of the first vaccine dose, while waiting for more vaccines to become available, could maximise the benefits of the limited available vaccines in high SARS-CoV-2 exposure settings in SSA such as Malawi.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261037

RESUMO

The Johnson and Johnson Ad26.COV2.S single dose vaccine represents an attractive option for COVID-19 vaccination in resource limited countries. We examined the effect of prior infection with different SARS-CoV-2 variants on Ad26.COV2.S immunogenicity. We compared participants who were SARS-CoV-2 naive with those either infected with the ancestral D614G virus, or infected in the second wave when Beta predominated. Prior infection significantly boosted spike binding antibodies, antibody-dependent cellular cytotoxicity and neutralizing antibodies against D614G, Beta and Delta, however neutralization cross-reactivity varied by wave. Robust CD4 and CD8 T cell responses were induced after vaccination, regardless of prior infection. T cell recognition of variants was largely preserved, apart from some reduction in CD8 recognition of Delta. Thus, Ad26.COV2.S vaccination following infection may result in enhanced protection against COVID-19. The impact of the infecting variant on neutralization breadth after vaccination has implications for the design of second-generation vaccines based on variants of concern.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-447722

RESUMO

The emergence of SARS-CoV-2 variants, such as 501Y.V2, with immune evasion mutations in the spike has resulted in reduced efficacy of several COVID-19 vaccines. However, the efficacy of the Ad26.COV2.S vaccine, when tested in South Africa after the emergence of 501Y.V2, was not adversely impacted. We therefore assessed the binding and neutralization capacity of n=120 South African sera (from Day 29, post-vaccination) from the Janssen phase 3 study, Ensemble. Spike binding assays using both the Wuhan-1 D614G and 501Y.V2 Spikes showed high levels of cross-reactivity. In contrast, in a subset of 27 sera, we observed significantly reduced neutralization of 501Y.V2 compared to Wuhan-1 D614G, with 22/27 (82%) of sera showing no detectable neutralization of 501Y.V2 at Day 29. These data suggest that even low levels of neutralizing antibodies may contribute to protection from moderate/severe disease. In addition, Fc effector function and T cells may play an important role in protection by this vaccine against 501Y.V2.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-434193

RESUMO

Neutralization escape by SARS-CoV-2 variants, as has been observed in the 501Y.V2 (B.1.351) variant, has impacted the efficacy of first generation COVID-19 vaccines. Here, the antibody response to the 501Y.V2 variant was examined in a cohort of patients hospitalized with COVID-19 in early 2021 - when over 90% of infections in South Africa were attributed to 501Y.V2. Robust binding and neutralizing antibody titers to the 501Y.V2 variant were detected and these binding antibodies showed high levels of cross-reactivity for the original variant, from the first wave. In contrast to an earlier study where sera from individuals infected with the original variant showed dramatically reduced potency against 501Y.V2, sera from 501Y.V2-infected patients maintained good cross-reactivity against viruses from the first wave. Furthermore, sera from 501Y.V2-infected patients also neutralized the 501Y.V3 (P.1) variant first described in Brazil, and now circulating globally. Collectively these data suggest that the antibody response in patients infected with 501Y.V2 has a broad specificity and that vaccines designed with the 501Y.V2 sequence may elicit more cross-reactive responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...