Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Phytopathology ; 108(12): 1344-1354, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30211634

RESUMO

Leaf rust, caused by the fungal pathogen Puccinia triticina, is a major threat to wheat production in many wheat-growing regions of the world. The introduction of leaf rust resistance genes into elite wheat germplasm is the preferred method of disease control, being environmentally friendly and crucial to sustained wheat production. Consequently, there is considerable value in identifying and characterizing new sources of leaf rust resistance. While many major, qualitative leaf rust resistance genes have been identified in wheat, a growing number of valuable sources of quantitative resistance have been reported. Here we review the progress made in the genetic identification of quantitative trait loci (QTL) for leaf rust resistance detected primarily in field analyses, i.e., adult plant resistance. Over the past 50 years, leaf rust resistance loci have been assigned to genomic locations through chromosome analyses and genetic mapping in biparental mapping populations, studies that represent 79 different wheat leaf rust resistance donor lines. In addition, seven association mapping studies have identified adult plant and seedling leaf rust resistance marker trait associations in over 4,000 wheat genotypes. Adult plant leaf rust resistance QTL have been found on all 21 chromosomes of hexaploid wheat, with the B genome carrying the greatest number of QTL. The group 2 chromosomes are also particularly rich in leaf rust resistance QTL. The A genome has the lowest number of QTL for leaf rust resistance. Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Assuntos
Basidiomycota/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Triticum/genética , Mapeamento Cromossômico , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Poliploidia , Plântula/imunologia , Plântula/microbiologia , Triticum/imunologia , Triticum/microbiologia
2.
Ciênc. rural (Online) ; 48(10): e20180106, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1044989

RESUMO

ABSTRACT: Aluminum (Al) toxicity in plants is seen in about 15% of the soils worldwide, restraining yields in arable land. In Brazil, acidic soils limit production of wheat (Triticum aestivum L.) and other cereals. Al is toxic for most winter cereals when its concentration increases and soil pH is below 5. One of the main concerns with acidic soil is the increase in the mobility of Al3+ions. Al binds to cell walls in roots, preventing meristematic elongation in sensitive species, causing damage to the root system and results in lower yields. Al3+ forms highly stable complexes with phosphorus (P), limiting its availability to plants, as well as reducing cell division and elongation. To deal with Al toxicity, plants have developed strategies such as organic acid (OA) exudation by roots; this mechanism of detoxification has been well-characterized. OAs, in turn, chelate ions Al3, forming non-toxic compounds that do not penetrate the root system. Some genes responsible for Al tolerance in wheat have been identified, particularly TaALMT1 and TaMATE1B that transport malate and citrate OAs, respectively. In this review, we discussed the mechanisms by which Al damages roots those by which plants are protected, primarily through two genes. We also described the interaction of the ALMT1 gene with P and iron (Fe).


RESUMO: A toxicidade do alumínio (Al) às plantas é observada em cerca de 15% dos solos no planeta, sendo um fator restritivo à produtividade em terras cultiváveis. No Brasil, os solos ácidos são limitantes à produção de trigo (Triticum aestivum L.) e outros cereais. O Al é tóxico para a maioria dos cereais de inverno, quando a sua concentração aumenta e o pH do solo atinge valores inferiores a 5. Uma das principais preocupações sobre o solo ácido é o aumento da mobilidade dos íons Al3+. O Al pode se ligar as paredes celulares das raízes e, como consequência, impedir o alongamento meristemático em espécies sensíveis, provocando danos ao sistema radicular, que resulta em menor desempenho agronômico das plantas. O Al3+ é também capaz de formar complexos altamente estáveis com fósforo (P), limitando sua disponibilidade para as plantas, e também reduzindo a divisão e o alongamento celular. Para lidar com a toxicidade ao Al, as plantas desenvolveram algumas estratégias como a exsudação de ácido orgânicos (AOs) pelas raízes, sendo este mecanismo de destoxificação bem caracterizado. Os AOs, por sua vez, quelam ions Al3+ formando compostos não tóxicos que não penetram no sistema radicular. Alguns genes responsáveis pela tolerância ao Al em trigo foram identificados, com ênfase para TaALMT1 e TaMATE1B, que exsudam os AOs malato e citrato, respectivamente. Nesta revisão, discutimos os mecanismos pelos quais Al danifica raízes, bem como plantas protegem-se, através de dois genes principalmente. Também apresentamos a interação do gene ALMT1 com P e ferro (Fe).

3.
Plant Sci ; 210: 214-23, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23849128

RESUMO

The miRNAs play important roles in regulation of gene expression at the post-transcriptional level. A small RNA and RNA-seq of libraries were constructed to identify miRNAs in Vriesea carinata, a native bromeliad species from Brazilian Atlantic Rainforest. Illumina technology was used to perform high throughput sequencing and data was analyzed using bioinformatics tools. We obtained 2,191,509 mature miRNAs sequences representing 54 conserved families in plant species. Further analysis allowed the prediction of secondary structures for 19 conserved and 16 novel miRNAs. Potential targets were predicted from pre-miRNAs by sequence homology and validated using RTqPCR approach. This study provides the first identification of miRNAs and their potential targets of a bromeliad species.


Assuntos
Bromeliaceae/genética , MicroRNAs/genética , Sequência de Bases , Brasil , Bromeliaceae/metabolismo , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Estresse Fisiológico
4.
Am J Bot ; 98(9): 1511-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21865505

RESUMO

PREMISE OF THE STUDY: The patterns of genetic structure in plant populations are mainly related to the species life history and breeding system, and knowledge of these patterns is necessary for the management, use, and conservation of biological diversity. Polyploidy is considered an important mode of evolution in plants, but few studies have evaluated genetic structure of polyploid populations. We studied the patterns of genetic structure and morphological variation of Bromelia antiacantha (Bromeliaceae) populations, a polyploid terrestrial species. • METHODS: Microsatellite markers and morphological analyses were used to explore patterns of genetic and morphological diversity in wild populations of B. antiacantha. • KEY RESULTS: The results of our simple-sequence repeat analyses supported that B. antiacantha is a polyploid species. The inbreeding coefficients were high and significant in all populations (F(IS) = 0.431), indicating homozygote excess. Bromelia antiacantha showed high levels of genetic differentiation among populations (F(ST) = 0.224) and therefore was highly structured. High morphological variation was observed in fruit phenotypic traits in the populations studied. • CONCLUSIONS: The levels of genetic diversity and the pattern of the population's structure may be related to the low recruitment of seeds, clonal reproduction, and the population's colonization history. The genetic and morphological variability displayed in this study are important issues in planning the conservation and exploitation of this resource in a sustainable way.


Assuntos
Bromelia/genética , Poliploidia , Sequência de Bases , Primers do DNA , Genes de Plantas , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA