Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 78(5): 1506-1524, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37129868

RESUMO

BACKGROUND AND AIMS: Lipid accumulation induced by alcohol consumption is not only an early pathophysiological response but also a prerequisite for the progression of alcohol-associated liver disease (ALD). Alternative splicing regulates gene expression and protein diversity; dysregulation of this process is implicated in human liver diseases. However, how the alternative splicing regulation of lipid metabolism contributes to the pathogenesis of ALD remains undefined. APPROACH AND RESULTS: Serine-arginine-rich protein kinase 2 (SRPK2), a key kinase controlling alternative splicing, is activated in hepatocytes in response to alcohol, in mice with chronic-plus-binge alcohol feeding, and in patients with ALD. Such induction activates sterol regulatory element-binding protein 1 and promotes lipogenesis in ALD. Overexpression of FGF21 in transgenic mice abolishes alcohol-mediated induction of SRPK2 and its associated steatosis, lipotoxicity, and inflammation; these alcohol-induced pathologies are exacerbated in FGF21 knockout mice. Mechanistically, SRPK2 is required for alcohol-mediated impairment of serine-arginine splicing factor 10, which generates exon 7 inclusion in lipin 1 and triggers concurrent induction of lipogenic regulators-lipin 1ß and sterol regulatory element-binding protein 1. FGF21 suppresses alcohol-induced SRPK2 accumulation through mammalian target of rapamycin complex 1 inhibition-dependent degradation of SRPK2. Silencing SRPK2 rescues alcohol-induced splicing dysregulation and liver injury in FGF21 knockout mice. CONCLUSIONS: These studies reveal that (1) the regulation of alternative splicing by SRPK2 is implicated in lipogenesis in humans with ALD; (2) FGF21 is a key hepatokine that ameliorates ALD pathologies largely by inhibiting SRPK2; and (3) targeting SRPK2 signaling by FGF21 may offer potential therapeutic approaches to combat ALD.


Assuntos
Arginina Quinase , Hepatopatias Alcoólicas , Humanos , Camundongos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Lipogênese/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Arginina Quinase/genética , Arginina Quinase/metabolismo , Processamento Alternativo , Fígado/patologia , Hepatopatias Alcoólicas/metabolismo , Etanol/toxicidade , Camundongos Knockout , Mamíferos/metabolismo
2.
Aging Cell ; 22(5): e13811, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36999514

RESUMO

Our studies indicate that the longevity factor SIRT1 is implicated in metabolic disease; however, whether and how hepatocyte-specific SIRT1 signaling is involved in liver fibrosis remains undefined. We characterized a functional link of age-mediated defects in SIRT1 to the NLRP3 inflammasome during age-related liver fibrosis. In multiple experimental murine models of liver fibrosis, we compared the development of liver fibrosis in young and old mice, as well as in liver-specific SIRT1 knockout (SIRT1 LKO) mice and wild-type (WT) mice. Liver injury, fibrosis, and inflammation were assessed histologically and quantified by real-time PCR analysis. In a model of hepatotoxin-induced liver fibrosis, old mice displayed more severe and persistent liver fibrosis than young mice during liver injury and after injury cessation, as characterized by inhibition of SIRT1, induction of NLRP3, infiltration of macrophages and neutrophils, activation of hepatic stellate cells (HSCs), and excessive deposition and remodeling of the extracellular matrix. Mechanistically, deletion of SIRT1 in hepatocytes resulted in NLRP3 and IL-1ß induction, pro-inflammatory response, and severe liver fibrosis in young mice, mimicking the ability of aging to impair the resolution of established fibrosis. In an aging mouse model, chronic-plus-binge alcohol feeding-induced liver fibrosis was attenuated by treatment with MCC950, a selective NLRP3 inhibitor. NLRP3 inhibition ameliorated alcoholic liver fibrosis in old mice by repressing inflammation and reducing hepatocyte-derived danger signaling-ASK1 and HMGB1. In conclusion, age-dependent SIRT1 defects lead to NLRP3 activation and inflammation, which in turn impairs the capacity to resolve fibrosis during aging.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sirtuína 1 , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fibrose , Inflamação , Camundongos Knockout
3.
Trends Endocrinol Metab ; 33(12): 801-803, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328906

RESUMO

Recently, Hou et al. shifted the research focus from the function of nuclear sirtuin (SIRT)6 to that of cytoplasmic SIRT6, which deacetylates and activates long-chain acyl-CoA synthase 5 (ACSL5). Their findings provide mechanistic insight into the role of cytoplasmic SIRT6 in fatty acid oxidation, acting as a therapeutic target for combating nonalcoholic fatty liver disease (NAFLD).


Assuntos
Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Sirtuínas/metabolismo
4.
J Clin Invest ; 132(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838051

RESUMO

Intrahepatic neutrophil infiltration has been implicated in severe alcoholic hepatitis (SAH) pathogenesis; however, the mechanism underlying neutrophil-induced injury in SAH remains obscure. This translational study aims to describe the patterns of intrahepatic neutrophil infiltration and its involvement in SAH pathogenesis. Immunohistochemistry analyses of explanted livers identified two SAH phenotypes despite a similar clinical presentation, one with high intrahepatic neutrophils (Neuhi), but low levels of CD8+ T cells, and vice versa. RNA-Seq analyses demonstrated that neutrophil cytosolic factor 1 (NCF1), a key factor in controlling neutrophilic ROS production, was upregulated and correlated with hepatic inflammation and disease progression. To study specifically the mechanisms related to Neuhi in AH patients and liver injury, we used the mouse model of chronic-plus-binge ethanol feeding and found that myeloid-specific deletion of the Ncf1 gene abolished ethanol-induced hepatic inflammation and steatosis. RNA-Seq analysis and the data from experimental models revealed that neutrophilic NCF1-dependent ROS promoted alcoholic hepatitis (AH) by inhibiting AMP-activated protein kinase (a key regulator of lipid metabolism) and microRNA-223 (a key antiinflammatory and antifibrotic microRNA). In conclusion, two distinct histopathological phenotypes based on liver immune phenotyping are observed in SAH patients, suggesting a separate mechanism driving liver injury and/or failure in these patients.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Animais , Etanol/efeitos adversos , Hepatite Alcoólica/genética , Hepatite Alcoólica/metabolismo , Inflamação/patologia , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
5.
J Clin Invest ; 131(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34730111

RESUMO

Dysregulation in adipokine biosynthesis and function contributes to obesity-induced metabolic diseases. However, the identities and functions of many of the obesity-induced secretory molecules remain unknown. Here, we report the identification of leucine-rich alpha-2-glycoprotein 1 (LRG1) as an obesity-associated adipokine that exacerbates high fat diet-induced hepatosteatosis and insulin resistance. Serum levels of LRG1 were markedly elevated in obese humans and mice compared with their respective controls. LRG1 deficiency in mice greatly alleviated diet-induced hepatosteatosis, obesity, and insulin resistance. Mechanistically, LRG1 bound with high selectivity to the liver and promoted hepatosteatosis by increasing de novo lipogenesis and suppressing fatty acid ß-oxidation. LRG1 also inhibited hepatic insulin signaling by downregulating insulin receptor substrates 1 and 2. Our study identified LRG1 as a key molecule that mediates the crosstalk between adipocytes and hepatocytes in diet-induced hepatosteatosis and insulin resistance. Suppressing LRG1 expression and function may be a promising strategy for the treatment of obesity-related metabolic diseases.


Assuntos
Adipocinas/metabolismo , Fígado Gorduroso/metabolismo , Glicoproteínas/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Adipocinas/genética , Animais , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Fígado Gorduroso/genética , Glicoproteínas/genética , Humanos , Camundongos , Camundongos Knockout , Obesidade/genética , Oxirredução
6.
Am J Physiol Endocrinol Metab ; 321(1): E90-E104, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029162

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a spectrum of disorders ranging from hepatic steatosis [excessive accumulation of triglycerides (TG)] to nonalcoholic steatohepatitis, which can progress to cirrhosis and hepatocellular carcinoma. The molecular pathogenesis of steatosis and progression to more severe NAFLD remains unclear. Obesity and aging, two principal risk factors for NAFLD, are associated with a hyperadrenergic state. ß-Adrenergic responsiveness in liver increases in animal models of obesity and aging, and in both is linked to increased hepatic expression of ß2-adrenergic receptors (ß2-ARs). We previously showed that in aging rodents intracellular signaling from elevated hepatic levels of ß2-ARs may contribute to liver steatosis. In this study we demonstrate that injection of formoterol, a highly selective ß2-AR agonist, to mice acutely results in hepatic TG accumulation. Further, we have sought to define the intrahepatic mechanisms underlying ß2-AR mediated steatosis by investigating changes in hepatic expression and cellular localization of enzymes, transcription factors, and coactivators involved in processes of lipid accrual and disposition-and also functional aspects thereof-in livers of formoterol-treated animals. Our results suggest that ß2-AR activation by formoterol leads to increased hepatic TG synthesis and de novo lipogenesis, increased but incomplete ß-oxidation of fatty acids with accumulation of potentially toxic long-chain acylcarnitine intermediates, and reduced TG secretion-all previously invoked as contributors to fatty liver disease. Experiments are ongoing to determine whether sustained activation of hepatic ß2-AR signaling by formoterol might be utilized to model fatty liver changes occurring in hyperadrenergic states of obesity and aging, and thereby identify novel molecular targets for the prevention or treatment of NAFLD.NEW & NOTEWORTHY Results of our study suggest that ß2-adrenergic receptor (ß2-AR) activation by agonist formoterol leads to increased hepatic TG synthesis and de novo lipogenesis, incomplete ß-oxidation of fatty acids with accumulation of long-chain acylcarnitine intermediates, and reduced TG secretion. These findings may, for the first time, implicate a role for ß2-AR responsive dysregulation of hepatic lipid metabolism in the pathogenetic processes underlying NAFLD in hyperadrenergic states such as obesity and aging.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Fígado Gorduroso/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Receptores Adrenérgicos beta 2/fisiologia , Animais , Carnitina/análogos & derivados , Carnitina/análise , Fumarato de Formoterol/farmacologia , Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Fosfatidato Fosfatase/análise , Triglicerídeos/biossíntese
7.
Front Cardiovasc Med ; 8: 649813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796575

RESUMO

Background: Binge drinking has become the most common and deadly pattern of excessive alcohol use in the United States, especially among younger adults. It is closely related to the increased risk of cardiovascular disease. Oxidative stress as a result of ethanol metabolism is the primary pathogenic factor for alcohol-induced end organ injury, but the role of protein S-glutathionylation-a reversible oxidative modification of protein cysteine thiol groups that mediates cellular actions by oxidants-in binge drinking-associated cardiovascular disease has not been explored. The present study defines the effect of alcohol binge drinking on the formation of protein S-glutathionylation in a mouse model of atherosclerosis. Methods and Results: To mimic the weekend binge drinking pattern in humans, ApoE deficient (ApoE -/-) mice on the Lieber-DeCarli liquid diet received ethanol or isocaloric maltose (as a control) gavages (5 g/kg/day, 2 consecutive days/week) for 6 weeks. The primary alcohol-targeted organs (liver, brain), and cardiovascular system (heart, aorta, lung) of these two groups of the mice were determined by measuring the protein S-glutathionylation levels and its regulatory enzymes including [Glutaredoxin1(Grx1), glutathione reductase (GR), glutathione-S-transferase Pi (GST-π)], as well as by assessing aortic endothelial function and liver lipid levels. Our results showed that binge drinking selectively stimulated protein S-glutathionylation in aorta, liver, and brain, which coincided with altered glutathionylation regulatory enzyme expression that is downregulated Grx1 and upregulated GST-π in aorta, massive upregulation of GST-π in liver, and no changes in Grx1 and GST-π in brain. Functionally, binge drinking induced aortic endothelial cell function, as reflected by increased aortic permeability and reduced flow-mediated vasodilation. Conclusions: This study is the first to provide in vivo evidence for differential effects of binge drinking on formation of protein S-glutathionylation and its enzymatic regulation system in major alcohol-target organs and cardiovascular system. The selective induction of protein S-glutathionylation in aorta and liver is associated with aortic endothelial dysfunction and fatty liver, which may be a potential redox mechanism for the increased risk of vascular disease in human binge-drinkers.

8.
Nat Commun ; 10(1): 3254, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332184

RESUMO

Pathogenic factors driving obesity to type 2 diabetes (T2D) are not fully understood. Group 1 innate lymphoid cells (ILC1s) are effectors of innate immunity and enriched in inflamed tissues. Here we show that the number of adipose ILC1s increases in obese T2D patients and correlates with glycemic parameters and with the number of ILC1s in the blood; circulating ILC1 numbers decrease as a result of metabolic improvements after bariatric surgery. In vitro co-culture experiments show that human adipose ILC1s promote adipose fibrogenesis and CD11c+ macrophage activation. Reconstruction of the adipose ILC1 population in Prkdc-/-IL2rg-/- mice by adoptive transfer drives adipose fibrogenesis through activation of TGFß1 signaling; however, transfer of Ifng-/- ILC1s has no effect on adipose fibrogenesis. Furthermore, inhibiting adipose accumulation of ILC1s using IL-12 neutralizing antibodies attenuates adipose tissue fibrosis and improves glycemic tolerance. Our data present insights into the mechanisms of local immune disturbances in obesity-related T2D.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Imunidade Inata , Linfócitos/metabolismo , Obesidade/metabolismo , Adipócitos/citologia , Adipócitos/imunologia , Adipócitos/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Cirurgia Bariátrica , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/imunologia , Fibrose , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Linfócitos/citologia , Linfócitos/imunologia , Ativação de Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/imunologia
9.
Proc Natl Acad Sci U S A ; 116(16): 7973-7981, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30926667

RESUMO

Whole-body metabolic homeostasis is tightly controlled by hormone-like factors with systemic or paracrine effects that are derived from nonendocrine organs, including adipose tissue (adipokines) and liver (hepatokines). Fibroblast growth factor 21 (FGF21) is a hormone-like protein, which is emerging as a major regulator of whole-body metabolism and has therapeutic potential for treating metabolic syndrome. However, the mechanisms that control FGF21 levels are not fully understood. Herein, we demonstrate that FGF21 production in the liver is regulated via a posttranscriptional network consisting of the CCR4-NOT deadenylase complex and RNA-binding protein tristetraprolin (TTP). In response to nutrient uptake, CCR4-NOT cooperates with TTP to degrade AU-rich mRNAs that encode pivotal metabolic regulators, including FGF21. Disruption of CCR4-NOT activity in the liver, by deletion of the catalytic subunit CNOT6L, increases serum FGF21 levels, which ameliorates diet-induced metabolic disorders and enhances energy expenditure without disrupting bone homeostasis. Taken together, our study describes a hepatic CCR4-NOT/FGF21 axis as a hitherto unrecognized systemic regulator of metabolism and suggests that hepatic CCR4-NOT may serve as a target for devising therapeutic strategies in metabolic syndrome and related morbidities.


Assuntos
Exorribonucleases , Fatores de Crescimento de Fibroblastos , Hepatócitos , Homeostase , Ribonucleases , Animais , Células Cultivadas , Dieta Hiperlipídica , Exorribonucleases/genética , Exorribonucleases/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Homeostase/genética , Homeostase/fisiologia , Humanos , Fígado/química , Fígado/metabolismo , Fígado/patologia , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo
10.
Hepatology ; 68(2): 496-514, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29457836

RESUMO

Alcoholic liver disease (ALD) is characterized by lipid accumulation and liver injury. However, how chronic alcohol consumption causes hepatic lipid accumulation remains elusive. The present study demonstrates that activation of the mechanistic target of rapamycin complex 1 (mTORC1) plays a causal role in alcoholic steatosis, inflammation, and liver injury. Chronic-plus-binge ethanol feeding led to hyperactivation of mTORC1, as evidenced by increased phosphorylation of mTOR and its downstream kinase S6 kinase 1 (S6K1) in hepatocytes. Aberrant activation of mTORC1 was likely attributed to the defects of the DEP domain-containing mTOR-interacting protein (DEPTOR) and the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1) in the liver of chronic-plus-binge ethanol-fed mice and in the liver of patients with ALD. Conversely, adenoviral overexpression of hepatic DEPTOR suppressed mTORC1 signaling and ameliorated alcoholic hepatosteatosis, inflammation, and acute-on-chronic liver injury. Mechanistically, the lipid-lowering effect of hepatic DEPTOR was attributable to decreased proteolytic processing, nuclear translocation, and transcriptional activity of the lipogenic transcription factor sterol regulatory element-binding protein-1 (SREBP-1). DEPTOR-dependent inhibition of mTORC1 also attenuated alcohol-induced cytoplasmic accumulation of the lipogenic regulator lipin 1 and prevented alcohol-mediated inhibition of fatty acid oxidation. Pharmacological intervention with rapamycin alleviated the ability of alcohol to up-regulate lipogenesis, to down-regulate fatty acid oxidation, and to induce steatogenic phenotypes. Chronic-plus-binge ethanol feeding led to activation of SREBP-1 and lipin 1 through S6K1-dependent and independent mechanisms. Furthermore, hepatocyte-specific deletion of SIRT1 disrupted DEPTOR function, enhanced mTORC1 activity, and exacerbated alcoholic fatty liver, inflammation, and liver injury in mice. CONCLUSION: The dysregulation of SIRT1-DEPTOR-mTORC1 signaling is a critical determinant of ALD pathology; targeting SIRT1 and DEPTOR and selectively inhibiting mTORC1-S6K1 signaling may have therapeutic potential for treating ALD in humans. (Hepatology 2018).


Assuntos
Fígado Gorduroso Alcoólico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipogênese/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Etanol/farmacologia , Fígado Gorduroso Alcoólico/patologia , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Biochem Biophys Res Commun ; 493(1): 291-297, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28890350

RESUMO

Thioredoxin-interacting protein (TXNIP) emerges as a central regulator for glucose homeostasis, which goes awry in diabetic subjects. Endothelial dysfunction is considered the earliest detectable stage of cardiovascular disease (CVD), a major complication of diabetes. Here, we hypothesize that TXNIP may promote endothelial dysfunction seen in Type 1 diabetes mellitus (T1D). Using a T1D-like rat model, we found that diabetic rats showed significantly higher TXNIP mRNA and protein levels in peripheral blood, compared to their non-diabetic counterparts. Those changes were accompanied by decreased production of nitric oxide (NO) and vascular endothelial growth factor (VEGF), concurrent with increased expression of reactive oxygen species (ROS) and vascular cell adhesion molecule 1 (VCAM-1) in the aortic endothelium. In addition, TXNIP overexpression in primary human aortic endothelial cells (HAECs) induced by either high glucose or overexpression of carbohydrate response element binding protein (ChREBP), a major transcriptional activator of TXNIP, promoted early apoptosis and impaired NO bioactivity. The correlation between TXNIP expression levels and endothelial dysfunction suggests that TXNIP may be a potential biomarker for vascular complications in T1D patients.


Assuntos
Doenças da Aorta/metabolismo , Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Angiopatias Diabéticas/metabolismo , Endotélio Vascular/metabolismo , Glucose/metabolismo , Animais , Proteínas de Ciclo Celular , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
13.
J Hepatol ; 66(3): 601-609, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27871879

RESUMO

BACKGROUND & AIMS: Aging is known to exacerbate the progression of alcoholic liver disease (ALD), but the underlying mechanisms remain obscure. The aim of this study was to use a chronic plus binge ethanol feeding model in mice to evaluate the effects of aging on alcohol-induced liver injury. METHODS: C57BL/6 mice were subjected to short-term (10days) ethanol plus one binge or long-term (8weeks) ethanol plus multiple binges of ethanol. Liver injury and fibrosis were determined. Hepatic stellate cells (HSCs) were isolated and used in in vitro studies. RESULTS: Middle-aged (12-14months) and old-aged (>16months) mice were more susceptible to liver injury, inflammation, and oxidative stress induced by short-term plus one binge or long-term plus multiple binges of ethanol feeding when compared to young (8-12weeks) mice. Long-term plus multiple binges of ethanol feeding induced greater liver fibrosis in middle-aged mice than that in young mice. Hepatic expression of sirtuin 1 (SIRT1) protein was downregulated in the middle-aged mice compared to young mice. Restoration of SIRT1 expression via the administration of adenovirus-SIRT1 vector ameliorated short-term plus binge ethanol-induced liver injury and fibrosis in middle-aged mice. HSCs isolated from middle-aged mice expressed lower levels of SIRT1 protein and were more susceptible to spontaneous activation in in vitro culture than those from young mice. Overexpression of SIRT1 reduced activation of HSCs from middle-aged mice in vitro with downregulation of PDGFR-α and c-Myc, while deletion of SIRT1 activated HSCs isolated from young mice in vitro. Finally, HSC-specific SIRT1 knockout mice were more susceptible to long-term chronic-plus-multiple binges of ethanol-induced liver fibrosis with upregulation of PDGFR-α expression. CONCLUSIONS: Aging exacerbates ALD in mice through the downregulation of SIRT1 in hepatocytes and HSCs. Activation of SIRT1 may serve as a novel target for the treatment of ALD. LAY SUMMARY: Aged mice are more susceptible to alcohol-induced liver injury and fibrosis, which is, at least in part, due to lower levels of sirtuin 1 protein in hepatocytes and hepatic stellate cells. Our findings suggest that sirtuin 1 activators may have beneficial effects for the treatment of alcoholic liver disease in aged patients.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Sirtuína 1/genética , Envelhecimento/metabolismo , Animais , Consumo Excessivo de Bebidas Alcoólicas , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatopatias Alcoólicas/etiologia , Regeneração Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Sirtuína 1/deficiência
14.
Redox Biol ; 9: 306-319, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27693992

RESUMO

BACKGROUND: Oxidative stress is implicated in increased vascular permeability associated with metabolic disorders, but the underlying redox mechanism is poorly defined. S-glutathionylation, a stable adduct of glutathione with protein sulfhydryl, is a reversible oxidative modification of protein and is emerging as an important redox signaling paradigm in cardiovascular physiopathology. The present study determines the role of protein S-glutathionylation in metabolic stress-induced endothelial cell permeability. METHODS AND RESULTS: In endothelial cells isolated from patients with type-2 diabetes mellitus, protein S-glutathionylation level was increased. This change was also observed in aortic endothelium in ApoE deficient (ApoE-/-) mice fed on Western diet. Metabolic stress-induced protein S-glutathionylation in human aortic endothelial cells (HAEC) was positively correlated with elevated endothelial cell permeability, as reflected by disassembly of cell-cell adherens junctions and cortical actin structures. These impairments were reversed by adenoviral overexpression of a specific de-glutathionylation enzyme, glutaredoxin-1 in cultured HAECs. Consistently, transgenic overexpression of human Glrx-1 in ApoE-/- mice fed the Western diet attenuated endothelial protein S-glutathionylation, actin cytoskeletal disorganization, and vascular permeability in the aorta. Mechanistically, glutathionylation and inactivation of Rac1, a small RhoGPase, were associated with endothelial hyperpermeability caused by metabolic stress. Glutathionylation of Rac1 on cysteine 81 and 157 located adjacent to guanine nucleotide binding site was required for the metabolic stress to inhibit Rac1 activity and promote endothelial hyperpermeability. CONCLUSIONS: Glutathionylation and inactivation of Rac1 in endothelial cells represent a novel redox mechanism of vascular barrier dysfunction associated with metabolic disorders.


Assuntos
Endotélio Vascular/metabolismo , Doenças Metabólicas/metabolismo , Oxirredução , Animais , Aorta/metabolismo , Apolipoproteínas E/genética , Permeabilidade Capilar , Linhagem Celular , Cisteína , Células Endoteliais/metabolismo , Expressão Gênica , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Humanos , Masculino , Doenças Metabólicas/genética , Camundongos , Camundongos Knockout , Mutação , Processamento de Proteína Pós-Traducional , Estresse Fisiológico , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
15.
Diabetes ; 65(8): 2295-310, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27207538

RESUMO

Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-ß1 (TGF-ß1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-ß1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-ß1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-ß1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-ß1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Matriz Extracelular/metabolismo , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1
16.
Hepatology ; 64(2): 425-38, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26926384

RESUMO

UNLABELLED: Among the 22 fibroblast growth factors (FGFs), FGF21 has now emerged as a key metabolic regulator. However, the mechanism whereby FGF21 mediates its metabolic actions per se remains largely unknown. Here, we show that FGF21 represses mammalian target of rapamycin complex 1 (mTORC1) and improves insulin sensitivity and glycogen storage in a hepatocyte-autonomous manner. Administration of FGF21 in mice inhibits mTORC1 in the liver, whereas FGF21-deficient mice display pronounced insulin-stimulated mTORC1 activation and exacerbated hepatic insulin resistance (IR). FGF21 inhibits insulin- or nutrient-stimulated activation of mTORC1 to enhance phosphorylation of Akt in HepG2 cells at both normal and IR condition. TSC1 deficiency abrogates FGF21-mediated inhibition of mTORC1 and augmentation of insulin signaling and glycogen synthesis. Strikingly, hepatic ßKlotho knockdown or hepatic hyperactivation of mTORC1/ribosomal protein S6 kinase 1 abrogates hepatic insulin-sensitizing and glycemic-control effects of FGF21 in diet-induced insulin-resistant mice. Moreover, FGF21 improves methionine- and choline-deficient diet-induced steatohepatitis. CONCLUSIONS: FGF21 acts as an inhibitor of mTORC1 to control hepatic insulin action and maintain glucose homeostasis, and mTORC1 inhibition by FGF21 has the therapeutic potential for treating IR and type 2 diabetes. (Hepatology 2016;64:425-438).


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Resistência à Insulina , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Dieta Hiperlipídica , Glicogênio/biossíntese , Insulina/metabolismo , Proteínas Klotho , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sacarose
17.
Mol Endocrinol ; 29(8): 1184-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26147751

RESUMO

Metformin has been considered a potential adjunctive therapy in treating poorly controlled type 1 diabetes with obesity and insulin resistance, owing to its potent effects on improving insulin sensitivity. However, the underlying mechanism of metformin's vascular protective effects remains obscure. Thioredoxin-interacting protein (TXNIP), a key regulator of cellular redox state induced by high-glucose concentration, decreases thioredoxin reductase activity and mediates apoptosis induced by oxidative stress. Here we report that high glucose-induced endothelial dysfunction is associated with induction of TXNIP expression in primary human aortic endothelial cells exposed to high-glucose conditions, whereas the metformin treatment suppresses high-glucose-induced TXNIP expression at mRNA and protein levels. We further show that metformin decreases the high-glucose-stimulated nuclear entry rate of two transcription factors, carbohydrate response element-binding protein (ChREBP) and forkhead box O1 (FOXO1), as well as their recruitment on the TXNIP promoter. An AMP-activated protein kinase inhibitor partially compromised these metformin effects. Our data suggest that endothelial dysfunction resulting from high-glucose concentrations is associated with TXNIP expression. Metformin down-regulates high-glucose-induced TXNIP transcription by inactivating ChREBP and FOXO1 in endothelial cells, partially through AMP-activated protein kinase activation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Endoteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Metformina/farmacologia , Adenilato Quinase/metabolismo , Animais , Aorta/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Citosol/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Proteína Forkhead Box O1 , Humanos , Inflamação , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Oxirredução , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo , Fatores de Transcrição/metabolismo
18.
Gastroenterology ; 146(2): 539-49.e7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24184811

RESUMO

BACKGROUND & AIMS: The hepatocyte-derived hormone fibroblast growth factor 21 (FGF21) is a hormone-like regulator of metabolism. The nicotinamide adenine dinucleotide-dependent deacetylase SIRT1 regulates fatty acid metabolism through multiple nutrient sensors. Hepatic overexpression of SIRT1 reduces steatosis and glucose intolerance in obese mice. We investigated mechanisms by which SIRT1 controls hepatic steatosis in mice. METHODS: Liver-specific SIRT1 knockout (SIRT1 LKO) mice and their wild-type littermates (controls) were divided into groups that were placed on a normal chow diet, fasted for 24 hours, or fasted for 24 hours and then fed for 6 hours. Liver tissues were collected and analyzed by histologic examination, gene expression profiling, and real-time polymerase chain reaction assays. Human HepG2 cells were incubated with pharmacologic activators of SIRT1 (resveratrol or SRT1720) and mitochondrion oxidation consumption rate and immunoblot analyses were performed. FGF21 was overexpressed in SIRT1 LKO mice using an adenoviral vector. Energy expenditure was assessed by indirect calorimetry. RESULTS: Prolonged fasting induced lipid deposition in livers of control mice, but severe hepatic steatosis in SIRT1 LKO mice. Gene expression analysis showed that fasting up-regulated FGF21 in livers of control mice but not in SIRT1 LKO mice. Decreased hepatic and circulating levels of FGF21 in fasted SIRT1 LKO mice were associated with reduced hepatic expression of genes involved in fatty acid oxidation and ketogenesis, and increased expression of genes that control lipogenesis, compared with fasted control mice. Resveratrol or SRT1720 each increased the transcriptional activity of the FGF21 promoter (-2070/+117) and levels of FGF21 messenger RNA and protein in HepG2 cells. Surprisingly, SIRT1 LKO mice developed late-onset obesity with impaired whole-body energy expenditure. Hepatic overexpression of FGF21 in SIRT1 LKO mice increased the expression of genes that regulate fatty acid oxidation, decreased fasting-induced steatosis, reduced obesity, increased energy expenditure, and promoted browning of white adipose tissue. CONCLUSIONS: SIRT1-mediated activation of FGF21 prevents liver steatosis caused by fasting. This hepatocyte-derived endocrine signaling appears to regulate expression of genes that control a brown fat-like program in white adipose tissue, energy expenditure, and adiposity. Strategies to activate SIRT1 or FGF21 could be used to treat fatty liver disease and obesity.


Assuntos
Metabolismo Energético/fisiologia , Fígado Gorduroso/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Sirtuína 1/metabolismo , Animais , Biomarcadores/metabolismo , Calorimetria Indireta , Jejum , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Immunoblotting , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
19.
PLoS One ; 8(6): e67532, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825667

RESUMO

BACKGROUND: Aberrantly elevated sterol regulatory element binding protein (SREBP), the lipogenic transcription factor, contributes to the development of fatty liver and insulin resistance in animals. Our recent studies have discovered that AMP-activated protein kinase (AMPK) phosphorylates SREBP at Ser-327 and inhibits its activity, represses SREBP-dependent lipogenesis, and thereby ameliorates hepatic steatosis and atherosclerosis in insulin-resistant LDLR(-/-) mice. Chronic inflammation and activation of NLRP3 inflammasome have been implicated in atherosclerosis and fatty liver disease. However, whether SREBP is involved in vascular lipid accumulation and inflammation in atherosclerosis remains largely unknown. PRINCIPAL FINDINGS: The preclinical study with aortic pouch biopsy specimens from humans with atherosclerosis and diabetes shows intense immunostaining for SREBP-1 and the inflammatory marker VCAM-1 in atherosclerotic plaques. The cleavage processing of SREBP-1 and -2 and expression of their target genes are increased in the well-established porcine model of diabetes and atherosclerosis, which develops human-like, complex atherosclerotic plaques. Immunostaining analysis indicates an elevation in SREBP-1 that is primarily localized in endothelial cells and in infiltrated macrophages within fatty streaks, fibrous caps with necrotic cores, and cholesterol crystals in advanced lesions. Moreover, concomitant suppression of NAD-dependent deacetylase SIRT1 and AMPK is observed in atherosclerotic pigs, which leads to the proteolytic activation of SREBP-1 by diminishing the deacetylation and Ser-372 phosphorylation of SREBP-1. Aberrantly elevated NLRP3 inflammasome markers are evidenced by increased expression of inflammasome components including NLPR3, ASC, and IL-1ß. The increase in SREBP-1 activity and IL-1ß production in lesions is associated with vascular inflammation and endothelial dysfunction in atherosclerotic pig aorta, as demonstrated by the induction of NF-κB, VCAM-1, iNOS, and COX-2, as well as by the repression of eNOS. CONCLUSIONS: These translational studies provide in vivo evidence that the dysregulation of SIRT1-AMPK-SREBP and stimulation of NLRP3 inflammasome may contribute to vascular lipid deposition and inflammation in atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Proteínas de Transporte/metabolismo , Complicações do Diabetes/metabolismo , Inflamassomos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Suínos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Biomarcadores/metabolismo , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/fisiopatologia , Complicações do Diabetes/patologia , Complicações do Diabetes/fisiopatologia , Progressão da Doença , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteólise/efeitos dos fármacos , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 2/química , Molécula 1 de Adesão de Célula Vascular/metabolismo
20.
J Biol Chem ; 288(15): 10490-504, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23430257

RESUMO

Activation of retinoic acid receptor (RAR) with all-trans-retinoic acid (RA) ameliorates glucose intolerance and insulin resistance in obese mice. The recently discovered fibroblast growth factor 21 (FGF21) is a hepatocyte-derived hormone that restores glucose and lipid homeostasis in obesity-induced diabetes. However, whether hepatic RAR is linked to FGF21 in the control of lipid metabolism and energy homeostasis remains elusive. Here we identify FGF21 as a direct target gene of RARß. The gene transcription of Fgf21 is increased by the RAR agonist RA and by overexpression of RARα and RARß, but it is unaffected by RARγ in HepG2 cells. Promoter deletion analysis characterizes a putative RA-responsive element (RARE) primarily located in the 5'-flanking region of the Fgf21 gene. Disruption of the RARE sequence abolishes RA responsiveness. In vivo adenoviral overexpression of RARß in the liver enhances production and secretion of FGF21, which in turn promotes hepatic fatty acid oxidation and ketogenesis and ultimately leads to increased energy expenditure in mice. The metabolic effects of RA or RARß are mimicked by FGF21 overexpression and largely abolished by FGF21 knockdown. Moreover, hepatic RARß is bound to the putative RAREs of the Fgf21 promoter in a fasting-inducible manner in vivo, which contributes to FGF21 induction and the metabolic adaptation to prolonged fasting. In addition to other nuclear receptors, such as peroxisome proliferator-activated receptor α and retinoic acid receptor-related receptor α, RAR may act as a novel component to induce hepatic FGF21 in the regulation of lipid metabolism. The hepatic RAR-FGF21 pathway may represent a potential drug target for treating metabolic disorders.


Assuntos
Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Fatores de Crescimento de Fibroblastos/biossíntese , Metabolismo dos Lipídeos/fisiologia , Receptores do Ácido Retinoico/metabolismo , Animais , Ácidos Graxos/genética , Fatores de Crescimento de Fibroblastos/genética , Células Hep G2 , Humanos , Fígado/metabolismo , Masculino , Camundongos , Oxirredução , PPAR alfa/genética , PPAR alfa/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Receptores do Ácido Retinoico/genética , Elementos de Resposta/fisiologia , Receptor alfa de Ácido Retinoico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...