Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38922099

RESUMO

Arsenic (As) contamination of surface water has become a global concern, especially for the third world countries, and it is imperative to develop advanced materials and an effective treatment method to address the issue. In this paper, iron doped ZIF-8@MXene (Fe-ZIF-8@MXene) was prepared as a potential adsorbent to effectively and simultaneously remove As(III/V) from wastewater. To investigate this, Fe-ZIF-8@MXene was characterized before and after the removal of mixed As(III/V). The results of Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), specific surface area (BET) and point of zero charge (pHpzc) showed that Fe-ZIF-8@MXene was prepared successfully and kept a stable structure after As(III) and As(V) adsorption. The particle size of Fe-ZIF-8@MXene was in the range of 0.5 µm to 2.5 µm, where its BET was 531.7 m2/g. For both contaminants, adsorption was found to follow pseudo-second-order kinetics and was best-fitted by the Langmuir adsorption model with correlation coefficients (R2) of 0.998 and 0.997, for As(III) and As(V), respectively. The adsorbent was then applied to remove As from two actual water samples, giving maximum removal rates of 91.07% and 98.96% for As(III) and As(V), respectively. Finally, removal mechanisms for As(III/V) by Fe-ZIF-8@MXene were also explored. During the adsorption, multiple complexes were formed under the effect of its abundant surface functional groups involving multiple mechanisms, which included Van der Waals force, surface adsorption, chemical complexation and electrostatic interactions. In conclusion, this study demonstrated that Fe-ZIF-8@MXene was an advanced and reusable material for simultaneous removal of As(III/V) in wastewater.

2.
Environ Geochem Health ; 46(5): 160, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592564

RESUMO

As a notable toxic substance, metalloid arsenic (As) widely exists in water body and drinking As-contaminated water for an extended period of time can result in serious health concerns. Here, the performance of nanoscale zero-valent iron (nZVI) modified N-doped biochar (NBC) composites (nZVI@NBC) activated peroxydisulfate (PDS) for As(III) removal was investigated. The removal efficiencies of As(III) with initial concentration ranging from 50 to 1000 µg/L were above 99% (the residual total arsenic below 10 µg/L, satisfying the contaminant limit for arsenic in drinking water) within 10 min by nZVI@NBC (0.2 g/L)/PDS (100 µM). As(III) removal efficiency influenced by reaction time, PDS dosage, initial concentration, pH, co-existing ions, and natural organic matter in nZVI@NBC/PDS system were investigated. The nZVI@NBC composite is magnetic and could be conveniently collected from aqueous solutions. In practical applications, nZVI@NBC/PDS has more than 99% As(III) removal efficiency in various water bodies (such as deionized water, piped water, river water, and lake water) under optimized operation parameters. Radical quenching and EPR analysis revealed that SO4·- and ·OH play important roles in nZVI@NBC/PDS system, and the possible reaction mechanism was further proposed. These results suggest that nZVI@NBC activated peroxydisulfate may be an efficient and fast approach for the removal of water contaminated with As(III).


Assuntos
Arsênio , Metaloides , Água , Água Doce , Ferro
3.
Bull Environ Contam Toxicol ; 109(2): 379-385, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35622103

RESUMO

It is crucial that a highly effective adsorbent can be used to simultaneously remove the composite pollution including both inorganic and organic arsenic from wastewater. In this work, the iron modified corncob biochar (MCCB), prepared via the co-precipitation of ferric chloride hexahydrate (FeCl3⋅6H2O) with sodium hydroxide (NaOH) on corncob biochar, was studied for the high efficiency removal of arsenilic acid (ASA) and arsenate [As(V)] in wastewater. X-ray diffraction, scanning electron microscopy, and fourier transform infrared spectroscopy were carried out to characterize the MCCB. At pH of 4.0-5.0, initial concentration of 10 mg/L ASA and 1 mg/L As(V), adsorbent dose of 0.4 g/L, the maximum adsorption capacities of ASA and As(V) were 49.20 and 4.89 mg/g, respectively. The adsorption performance of MCCB for ASA and As(V) was fitted well to the pseudo-second-order kinetic model. Results from this study indicate the promise of MCCB as an efficient, low-cost and environmentally friendly adsorbent for composite arsenic pollution.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Arseniatos , Arsênio/química , Carvão Vegetal , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias , Poluentes Químicos da Água/química , Zea mays
4.
Environ Monit Assess ; 192(1): 56, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31858274

RESUMO

In the original paper, there was an error in the communication unit 1. The communication unit was "Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China".

5.
Environ Monit Assess ; 191(11): 663, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31650250

RESUMO

In order to acquire the spatial distribution, speciation, and risk assessment of arsenic (As), 18 sediment samples were collected in the middle and upper reaches (Nanpan River, Beipan River, Hongshui River, Diaojiang River, and Duliu River) of the Xijiang River basin, China. The chemical fractions of As in the collected sediments were mainly dominated by the residual fraction and the Fe (Mn, Al) oxide/oxyhydroxides fractions. The correlation analysis results showed that the chemical fraction of As in sediments had close correlations with Mn, good correlations with Fe and organic matter (OM), while weak correlations with Al and carbonate. In addition, it also showed that Diaojiang River basin was found to have an extremely high As pollution status and suffered from high ecological risk. Duliu River and Nanpan River had moderately polluted levels of As and showed a low ecological risk. The other sample sites of Xijiang River basin were uncontaminated of As. The assessment results from this study indicated that the different types of species present based on the chemical fractionation of As from the Xijiang River basin showed different risks. Graphical abstract.


Assuntos
Arsênio/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Carbonatos/análise , China , Ecologia , Metais Pesados/análise , Medição de Risco , Rios/química
6.
Environ Sci Pollut Res Int ; 26(12): 12014-12024, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30827022

RESUMO

In this study, Mn-doped MgAl-layered double hydroxides (LDHs) were successfully synthesized for efficient removal arsenate from aqueous solution. The structure and composition of Mn-doped MgAl-LDHs intercalated by different ions such as CO32-, Cl-, or NO3- were investigated. The characterizations of XRD, ATR FT-IR, SEM, TG-DTA, and N2 adsorption-desorption presented that the Mn-doped MgAl-LDHs (donated as Mn-LDHs) have very similar physical morphologies and properties to the MgAl-Cl-LDHs (donated as Mg-LDHs). However, the Mn-LDHs exhibits more preferable arsenate adsorption than Mg-LDHs. The As(V) removal kinetics data of Mn-LDHs is followed pseudo-second-order expression. The adsorption capacity of As(V) on Mn-LDHs via Langmuir isotherm model was 166.94 mg g-1. The results of XPS revealed that the enhanced removal mechanism can be attributed to surface complexation of As(V) with Mn on the surface of Mn-LDHs. These results prove that Mn-doped LDHs can be considered as a potential material for adsorption As(V) from wastewater.


Assuntos
Arseniatos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Arseniatos/análise , Hidróxidos/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
7.
Environ Sci Pollut Res Int ; 26(10): 10159-10173, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30746628

RESUMO

Selenate (Se(VI)) and selenite (Se(IV)) are common soluble wastewater pollutants in natural and anthropogenic systems. We evaluated the reduction efficiency and removal of low (0.02 and 2 mg/L) and high (20 and 200 mg/L) Se(IV)(aq) and Se(VI)(aq) concentrations to elemental (Se0) via the use of ascorbic acid (AA), thiourea (TH), and a 50-50% mixture. The reduction efficiency of AA with Se(IV)(aq) to nano- and micro-crystalline Se0 was ≥ 95%, but ≤ 5% of Se(VI)(aq) was reduced to Se(IV)(aq) with no Se0. Thiourea was able to reduce ≤ 75% of Se(IV)(aq) to bulk Se0 at lower concentrations but was more effective (≥ 90%) at higher concentrations. Reduction of Se(VI)(aq)→Se (IV)(aq) with TH was ≤ 75% at trace concentrations which steadily declined as the concentrations increased, and the products formed were elemental sulfur (S0) and SnSe8-n phases. The reduction efficiency of Se(IV)(aq) to bulk Se0 upon the addition of AA+TH was ≤ 81% at low concentrations and ≥ 90% at higher concentrations. An inverse relation to what was observed with Se(IV)(aq) was found upon the addition of AA+TH with Se(VI)(aq). At low Se(VI)(aq) concentrations, AA+TH was able to reduce more effectively (≤ 61%) Se(VI)(aq)→Se(IV)(aq)→Se0, while at higher concentrations, it was ineffective (≤ 11%) and Se0, S0, and SnSe8-n formed. This work helps to guide the removal, reduction effectiveness, and products formed from AA, TH, and a 50-50% mixture on Se(IV)(aq) and Se(VI)(aq) to Se0 under acidic conditions and environmentally relevant concentrations possibly found in acidic natural waters, hydrometallurgical chloride processing operations, and acid mine drainage/acid rock drainage tailings. Graphical Abstract ᅟ.


Assuntos
Ácido Ascórbico/química , Modelos Químicos , Ácido Selênico/química , Ácido Selenioso/química , Tioureia/química , Ácido Ascórbico/análise , Mineração , Oxirredução , Ácido Selênico/análise , Ácido Selenioso/análise , Selênio/análise , Compostos de Selênio , Enxofre , Tioureia/análise
8.
Water Sci Technol ; 80(10): 1851-1860, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32144217

RESUMO

A novel zerovalen-iron-biochar composite (nZVI/SBC) was synthesized by using FeCl3-laden sorghum straw biomass as the raw material via a facile one-step pyrolysis method without additional chemical reactions (e.g., by NaBH4 reduction or thermochemical reduction). The nZVI/SBC was successfully employed as an activator in phenol degradation by activated persulfate. XRD, SEM, N2 adsorption-desorption and atomic absorption spectrophotometry analysis showed that the nanosized Fe0 was the main component of the 4ZVI/SBC activator, which was a mesopore material with an optimal FeCl3·6H2O/biomass impregnation mass ratio of 2.7 g/g. The 4ZVI/SBC activator showed an efficient degradation of phenol (95.65% for 30 min at 25 °C) with a large specific surface area of 78.669 m2·g-1. The recovery of 4ZVI/SBC activator after the degradation reaction of phenol can be realized with the small amount of dissolved iron in the water. The 4ZVI/SBC activator facilitated the activation of persulfate to degrade phenol into non-toxic CO2 and H2O. The trend of Cl-, SO4 2- and NO3 - affected the removal efficiency of phenol by using the 4ZVI/SBC activator in the following order: NO3 - > SO4 2- > Cl-. The one-step synthesis of the nanosized zerovalent-iron-biochar composite was feasible and may be applied as an effective strategy for controlling organic waste (e.g. phenol) by waste biomass.


Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Fenóis
9.
RSC Adv ; 9(22): 12428-12435, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35515827

RESUMO

A one-step carbothermal synthesis and characterization of biochar-supported nanoscale zero-valent iron (nZVI/BC) was performed for the removal of hexavalent chromium (Cr(vi)) from aqueous solution. High dispersions of nanoscale zero-valent iron supported on biochar were successfully synthesized by the pyrolysis of an iron-impregnated biomass (corn stover) as the carbon and iron source under nitrogen atmosphere. The effects of the pyrolytic temperature on the Fe mineralogies formed on the biochar are discussed. In general, the effects of the treatment time, initial solution pH, and nZVI/BC dosage on the Cr(vi) removal are presented. The results showed high crystallinity and purity, and nZVI/BC was obtained at a pyrolytic temperature of 800 °C. The batch experimental results determined that the adsorption capacity of Cr(vi) decreases with the increase in the initial pH value from 4.0 to 10.0. The Cr(vi) adsorption kinetics data effectively followed a pseudo-second-order kinetics with a calculated rate constant of 0.0.3396 g mg-1 min-1. The calculated thermodynamic parameters, such as ΔG°, ΔH°, and ΔS°, were evaluated, and the results indicated that the Cr(vi) reduction on nZVI/BC was a spontaneous and endothermic process. The adsorption mechanism of Cr(vi) was investigated by XRD and XPS analyses and the results demonstrated that Cr(vi) was reduced to Cr(iii) and the oxidation of nZVI occurred during the reaction process. These results prove that nZVI/BC synthesized by a one-step carbothermal method can be considered as a potential candidate for the removal of Cr(vi) from aqueous solutions.

10.
J Environ Sci (China) ; 22(5): 669-74, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20608501

RESUMO

To explore biodegradation of 2-naphthol and its metabolites accumulated in wastewater treatment, a series of bio-degradation experiments were conducted. Two main metabolites of 2-naphthol, 1,2-naphthalene-diol and 1,2-naphthoquinone, were identified by high-performance liquid chromatography with standards. Combining fungus Aspergillus niger with bacterium Bacillus subtilis in the treatment enhanced 2-naphthol degradation efficiency, lowered the accumulation of the two toxic metabolites. There were two main phases during the degradation process by the kinetic analysis: 2-naphthol was first partly degraded by the fungus, producing labile and easily accumulated metabolites, and then the metabolites were mainly degraded by the bacterium, attested by the degradation processes of 1,2-naphthalene-diol and 1,2-naphthoquinone as sole source of carbon and energy. Sodium succinate, as a co-metabolic substrate, was the most suitable compound for the continuous degradation. The optimum concentration of 2-naphthol was 50 mg/L. The overall 2-naphthol degradation rate was 92%, and the CODcr removal rate was 80% on day 10. These results indicated that high degradation rate of 2-naphthol should not be considered as the sole desirable criterion for the bioremediation of 2-naphthol-contaminated soils/wastewater.


Assuntos
Aspergillus niger/metabolismo , Bacillus subtilis/metabolismo , Naftóis/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Cinética , Minerais/metabolismo , Naftóis/química , Naftóis/farmacologia , Naftoquinonas/química , Naftoquinonas/metabolismo
11.
J Hazard Mater ; 166(1): 33-8, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19070430

RESUMO

2-Naphthol, which originates widely from various industrial activities, is toxic and thus harmful to human liver and kidney. A new compound biodegradation system was adopted to degrade 2-naphthol-contaminated wastewater. Enzymatic response to 2-naphthol biodegradation in the aqueous phase was also studied. As a co-metabolic substrate, salicylic acid could induce the two microorganisms to produce a large amount of degradation enzymes for 2-naphthol. The key enzymes were confirmed as polyphenol oxidase (PPO) and catechol 2,3-dioxygenase (C23O). The degradation extent of 2-naphthol, determined by high performance liquid chromatography (HPLC), was enhanced by nearly 15% on the 6th day after the addition of the co-metabolic substrate. The results obtained thus clearly indicated that the co-metabolic process was the most important factor affecting the degradation of the target contaminant. The optimal concentration of 2-naphthol was 150 mg L(-1), and the optimal pH value was 7.0. The degradation extent of 2-naphthol was further enhanced by nearly 10% after the addition of Tween 80, which increased the bioavailability of 2-naphthol. In a practical treatment of industrial wastewater from medical manufacture, the synergistic degradation system resulted in a high degradation efficiency of 2-naphthol although its lag time was a little long in the initial stage.


Assuntos
Biodegradação Ambiental , Naftóis/metabolismo , Poluentes Químicos da Água/metabolismo , Bacillus subtilis/metabolismo , Catecol 2,3-Dioxigenase/metabolismo , Catecol Oxidase/metabolismo , Fusarium/metabolismo , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/normas , Poluentes Químicos da Água/normas , Purificação da Água/métodos , Purificação da Água/normas
12.
J Hazard Mater ; 162(1): 463-8, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18585859

RESUMO

Rice plant pot experiments designed to identify benzo[a]pyrene (B[a]P) sources in plant tissues were conducted in an air-quality controlled greenhouse built to prevent contamination from B[a]P air pollution. Results from quartz sand cultures with control and 50, 100 and 500 microgkg(-1) of B[a]P treatments were compared with those from outdoor field experiments, in which rice plants were exposed to polluted air in the urban area of Shenyang, China. When B[a]P was strictly controlled in both air and quartz sand culture medium, the background values of B[a]P in rice plant tissues were uniformly very low. There was no significant difference of B[a]P contents of rice grain between control and treatments of B[a]P in controlled air quality trials. This indicated that the source of B[a]P in the rice grains is not from any B[a]P in the root culture media. The B[a]P content of rice grain, husk, and stem with leaf sampled from outdoor field was up to 7.33-, 9.21- and 27.10-fold higher than corresponding tissues from air-quality controlled conditions. This indicated that polluted air is the main source of B[a]P in aboveground tissues. Therefore control of B[a]P pollution in ambient air is of prime importance for improving the quality of cereal crops.


Assuntos
Benzo(a)pireno/análise , Oryza/química , Ar/análise , Monitoramento Ambiental , Recuperação e Remediação Ambiental , Filtração , Luz , Oryza/crescimento & desenvolvimento , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Sementes/química , Relação Estrutura-Atividade
13.
J Environ Sci (China) ; 19(2): 238-43, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17915736

RESUMO

Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6-quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.


Assuntos
Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Penicillium chrysogenum/metabolismo , Permanganato de Potássio/química , Benzopirenos/metabolismo , Biodegradação Ambiental , Di-Hidroxi-Di-Hidrobenzopirenos/metabolismo , Concentração de Íons de Hidrogênio , Indicadores e Reagentes/química
14.
Chemosphere ; 67(7): 1368-74, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17126885

RESUMO

A high degradation extent of benzo[a]pyrene (BaP) should not be considered as the sole desirable criterion for the bioremediation of BaP-contaminated soils because some of its accumulated metabolites still have severe health risks to human. Two main metabolites of BaP, benzo[a]pyrene-1,6-quinone (BP1,6-quinone) and 3-hydroxybenzo[a]pyrene (3-OHBP) were identified by high performance liquid chromatography (HPLC) with standards. This study was the first time that degradation of both BaP and the two metabolites was carried out by chemical oxidation and biodegradation. Three main phases during the whole degradation process were proposed. Hydrogen peroxide-zinc (H(2)O(2)-Zn), the fungus - Aspergillus niger and the bacteria - Zoogloea sp. played an important role in the different phases. The degradation parameters of the system were also optimized, and the results showed that the effect of degradation was the best when fungus-bacteria combined with H(2)O(2)-Zn, the concentration range of BaP in the cultures was 30-120mg/l, the initial pH of the cultures was 6.0. However, as co-metabolites, phenanthrene significant inhibited the degradation of BaP. This combined degradation system compared with the conventional method of degradation by domestic fungus only, enhanced the degradation extent of BaP by more than 20% on the 12d. The highest accumulation of BP1,6-quinone and 3-OHBP were reduced by nearly 10% in the degradation experiments, which further proved that the combined degradation system was more effective as far as joint toxicity of BaP and its metabolites are concerned.


Assuntos
Benzo(a)pireno/química , Aspergillus/metabolismo , Benzo(a)pireno/metabolismo , Biodegradação Ambiental , Catálise , Cromatografia Líquida de Alta Pressão , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Metais/química , Oxirredução , Fenantrenos/análise , Ácido Salicílico/análise , Microbiologia do Solo , Zoogloea/metabolismo
15.
Huan Jing Ke Xue ; 27(12): 2531-5, 2006 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-17304853

RESUMO

Two metabolites, cis-BP4, 5-dihydrodiol and cis-BP7, 8-dihydrodiol, were identified by high-performance liquid chromatography (HPLC) during the degradation of BaP by Bacillus-07 (BA-07). The two metabolites were hardly further metabolized for their toxicity to microorganism. To promote degradation of BaP and decrease accumulation of cis-BP4, 5-dihydrodiol and cis-BP7, 8-dihydrodiol, two methods (degradation only by BA-07, degradation by coupling the BA-07 and KMnO4) were compared. In addition, parameters of continued degradation of BaP and the two metabolites were optimized under the experiment conditions. The results showed that (1)the method of coupling the chemical oxidation and biodegradation (BA-07 and KMnO4) was better than only biodegradation (BA-07); (2) residue rate of cis-BP4, 5-dihydrodiol was higher than that of cis-BP7, 8-dihydrodiol when the samples were determined in the same time; (3)the effect of continued degradation was the best when the initial concentration of BaP was 40 microg/mL, pH value of the culture was 7.0, co-metabolic substrates was sodium succinate. Meanwhile, it was put forward that the method of coupling the chemical oxidation and biodegradation was effective on continued degradation of persistent organic contaminants in the environment.


Assuntos
Bacillus/metabolismo , Benzo(a)pireno/metabolismo , Di-Hidroxi-Di-Hidrobenzopirenos/metabolismo , Poluentes do Solo/metabolismo , Bacillus/crescimento & desenvolvimento , Benzo(a)pireno/química , Biodegradação Ambiental , Di-Hidroxi-Di-Hidrobenzopirenos/química , Estrutura Molecular , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA