Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 10: 34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476478

RESUMO

The implementation of an intelligent road network system requires many sensors for acquiring data from roads, bridges, and vehicles, thereby enabling comprehensive monitoring and regulation of road networks. Given this large number of required sensors, the sensors must be cost-effective, dependable, and environmentally friendly. Here, we show a laser upgrading strategy for coal tar, a low-value byproduct of coal distillation, to manufacture flexible strain-gauge sensors with maximum gauge factors of 15.20 and 254.17 for tension and compression respectively. Furthermore, we completely designed the supporting processes of sensor placement, data acquisition, processing, wireless communication, and information decoding to demonstrate the application of our sensors in traffic and bridge vibration monitoring. Our novel strategy of using lasers to upgrade coal tar for use as a sensor not only achieves the goal of turning waste into a resource but also provides an approach to satisfy large-scale application requirements for enabling intelligent road networks.

2.
Adv Sci (Weinh) ; 10(31): e2302479, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544898

RESUMO

Refractory metals offer exceptional benefits for high temperature electronics including high-temperature resistance, corrosion resistance and excellent mechanical strength, while their high melting temperature and poor processibility poses challenges to manufacturing. Here this work reports a direct ink writing and tar-mediated laser sintering (DIW-TMLS) technique to fabricate three-dimensional (3D) refractory metal devices for high temperature applications. Metallic inks with high viscosity and enhanced light absorbance are designed by utilizing coal tar as binder. The printed patterns are sintered into oxidation-free porous metallic structures using a low-power (<10 W) laser in ambient environment, and 3D freestanding architectures can be rapidly fabricated by one step. Several applications are presented, including a fractal pattern-based strain gauge, an electrically small antenna (ESA) patterned on a hemisphere, and a wireless temperature sensor that can work up to 350 °C and withstand burning flames. The DIW-TMLS technique paves a viable route for rapid patterning of various metal materials with wide applicability, high flexibility, and 3D conformability, expanding the possibilities of harsh environment sensors.

3.
J Phys Chem Lett ; 13(14): 3283-3289, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35389655

RESUMO

Little attention has been devoted to studying the pressures during the mesophase pitches carbonization processes and their effects on the as-produced carbon fibers' mechanical properties. Herein, we study the pressure-enhanced graphitization of mesophase pitch and the promoted tensile stresses of the produced carbon fibers using full atomistic simulations based on reactive force fields. Results show that pressures increase the tensile stress of as-produced fibers by 3.7-11 times under 1-6 GPa isotropic compressing pressure. The highest tensile stress can reach 4.39 GPa in carbonized coal tar pitch at 4000 K under 6 GPa. In experimental work, the pressurized laser-processed mesophase pitch generates less gas and shows more ordered carbonized structures in Raman spectra. This work provides a fundamental understanding of the reaction mechanism of carbon fiber production under pressure, and also illustrates a promising method to manufacture mesophase pitch-based carbon fibers with exceptional mechanical properties.

4.
Adv Sci (Weinh) ; 9(11): e2105499, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35142105

RESUMO

Mechanically close-to-bone carbon-fiber-reinforced poly-ether-ether-ketone (CFR-PEEK)-based orthopedic implants are rising to compete with metal implants, due to their X-ray transparency, superior biocompatibility, and body-environment stability. While real-time strain assessment of implants is crucial for the postsurgery study of fracture union and failure of prostheses, integrating precise and durable sensors on orthopedic implants remains a great challenge. Herein, a laser direct-write technique is presented to pattern conductive features (minimum sheet resistance <1.7 Ω sq-1 ) on CRF-PEEK-based parts, which can act as strain sensors. The as-fabricated sensors exhibit excellent linearity (R2  = 0.997) over the working range (0-2.5% strain). While rigid silicon- or metal-based sensor chips have to be packaged onto flat surfaces, all-carbon-based sensors can be written on the complex curved surfaces of CFR-PEEK joints using a portable laser mounted on a six-axis robotic manipulator. A wireless transmission prototype is also demonstrated using a Bluetooth module. Such results will allow a wider space to design sensors (and arrays) for detailed loading progressing monitoring and personalized diagnostic applications.


Assuntos
Éter , Cetonas , Benzofenonas , Carbono , Fibra de Carbono , Lasers , Polietilenoglicóis , Polímeros , Próteses e Implantes
5.
ACS Nano ; 16(2): 2101-2109, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35077155

RESUMO

Most coal-to-product routes require complex thermal treatment to carbonize the raw materials. However, the lack of unified comparison of products made from different kinds of coals downplays the role of initial coal chemistry in high-temperature reactions. Here, we used a CO2 laser to investigate the roles that aromatic content and maturity play in the structural evolution and doping of coals during annealing. Results show that a bituminous coal (DECS 19) with aromatic content and maturity in between higher rank, more mature anthracite (DECS 21) and lower rank, lower maturity lignite (DECS 25) leads to more graphite-like structure observed from the highest 2D peak on the Raman spectrum and conductivity (sheet resistance ∼30 ohm sq-1) after lasing. When nitrogen dopants are incorporated with saturated urea dopants into coals through laser ablation, nitrogen preferentially incorporates at the edge sites of graphitic grains. Furthermore, oxide nanoparticles can be incorporated into the graphitic backbone of coal to modify their electronic and magnetic properties through laser annealing. Leveraging tunable magnetic behavior, we demonstrate a soft actuator using both conductive and magnetic coal-Fe/Co oxide. Through laser annealing, we propose a paradigm to understand and control coal chemistry toward flexible and tunable doping and magnetism.

6.
Nat Nanotechnol ; 17(2): 153-158, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34795438

RESUMO

Dense, thick, but fast-ion-conductive electrodes are critical yet challenging components of ultrafast electrochemical capacitors with high volumetric power/energy densities1-4. Here we report an exfoliation-fragmentation-restacking strategy towards thickness-adjustable (1.5‒24.0 µm) dense electrode films of restacked two-dimensional 1T-MoS2 quantum sheets. These films bear the unique architecture of an exceptionally high density of narrow (sub-1.2 nm) and ultrashort (~6.1 nm) hydrophobic nanochannels for confinement ion transport. Among them, 14-µm-thick films tested at 2,000 mV s-1 can deliver not only a high areal capacitance of 0.63 F cm-2 but also a volumetric capacitance of 437 F cm-3 that is one order of magnitude higher than that of other electrodes. Density functional theory and ab initio molecular dynamics simulations suggest that both hydration and nanoscale channels play crucial roles in enabling ultrafast ion transport and enhanced charge storage. This work provides a versatile strategy for generating rapid ion transport channels in thick but dense films for energy storage and filtration applications.

7.
J Phys Chem Lett ; 12(18): 4434-4439, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33950671

RESUMO

Dual-electron transfer with Mg2+-ion intercalation outperforms typical alkali metal-ion (Li+, Na+, K+) systems with superior charge storage efficiency while the neutral electrolytes can achieve a working voltage beyond the hydrolysis window of 1.23 V. Hence, aqueous Mg-ion electrolytes are promising for electrochemical energy storage devices to boost the energy density and solve the safety challenges synchronously. However, the Mg-based electrochemical energy storage (EES) devices are generally confined by poor rate performance due to the slow Mg2+ diffusion in the electrode materials. In this paper, we demonstrate that carbon-deficient carbide could function as a promising electrode material in Mg2+-ion-based EES. An electrode made of such carbide can operate over an extended window up to 2.4 V in 1 M magnesium acetate, showing superior performance of high capacitance (125.2 F/g), high energy density (25.1 Wh/kg), and high power density (3934.8 W/kg). Ab initio simulation reveals migration energy of Mg2+ being lower than that of Li+ diffusing from one carbon defect to another in the α-MoC1-x lattice, supporting the experimental results that a symmetric supercapacitor made of α-MoC1-x in an electrolyte based on Mg2+ outperforms electrolytes based on Li+.

8.
ACS Nano ; 14(8): 10413-10420, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806046

RESUMO

Refractory metals and their carbides possess extraordinary chemical and temperature resilience and exceptional mechanical strength. Yet, they are notoriously difficult to employ in additive manufacturing, due to the high temperatures needed for processing. State of the art approaches to manufacture these materials generally require either a high-energy laser or electron beam as well as ventilation to protect the metal powder from combustion. Here, we present a versatile manufacturing process that utilizes tar as both a light absorber and antioxidant binder to sinter thin films of aluminum, copper, nickel, molybdenum, and tungsten powder using a low power (<2W) CO2 laser in air. Films of sintered Al/Cu/Ni metals have sheet resistances of ∼10-1 ohm/sq, while laser-sintered Mo/W-tar thin films form carbide phases. Several devices are demonstrated, including laser-sintered porous copper with a stable response to large strain (3.0) after 150 cycles, and a laserprocessed Mo/MoC(1-x) filament that reaches T ∼1000 °C in open air at 12 V. These results show that tar-mediated laser sintering represents a possible low energy, cost-effective route for engineering refractory materials and one that can easily be extended to additive manufacturing processes.

9.
Adv Mater ; 31(35): e1900331, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31268196

RESUMO

Steam-cracker tar (SCT) is a by-product of ethylene production that is in massive quantities globally (>150 × 106 tons per year). With few useful applications, the production of unwanted SCT leads to the need for its costly disposal or burning at the boiler plant. The discovery of new uses for SCT would therefore bring both economic and environmental benefits, although, to date, efforts toward employing SCT in diverse applications have been limited, and progress is further hampered by a lack of understanding of the material itself. Although complex and highly heterogeneous in nature, the molecular composition of SCT has the potential to serve as a diverse and tunable feedstock for wide-ranging applications. Here, a simple solution-processing method for SCT that allows its conductivity and optical properties to be controlled over orders of magnitude is reported. Here, by way of example, the focus is on the production of transparent conductive thin films, which exhibit a wide range of transparencies (23-93%) and sheet resistances (2.5 Ω â–¡-1 to 1.2 kΩ â–¡-1 ) that are tuned by a combination of solution concentration and thermal annealing. As transparent Joule heaters, even without optimization, these SCT devices show competitive performance compared to established technologies such as those based on reduced graphene oxide, and surpass the temperature stability limit of other materials. Furthermore, it is demonstrated that laser annealing can be used to process the SCT films and directly pattern transparent heaters on an arbitrary substrate. These results highlight the potential of SCT as a feedstock material for electronic applications and suggest that broader classes of either naturally occurring carbon or produced carbonaceous by-products could prove useful in a range of applications.

10.
Nat Commun ; 10(1): 3112, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308363

RESUMO

Ultrathin transition metal carbides with high capacity, high surface area, and high conductivity are a promising family of materials for applications from energy storage to catalysis. However, large-scale, cost-effective, and precursor-free methods to prepare ultrathin carbides are lacking. Here, we demonstrate a direct pattern method to manufacture ultrathin carbides (MoCx, WCx, and CoCx) on versatile substrates using a CO2 laser. The laser-sculptured polycrystalline carbides (macroporous, ~10-20 nm wall thickness, ~10 nm crystallinity) show high energy storage capability, hierarchical porous structure, and higher thermal resilience than MXenes and other laser-ablated carbon materials. A flexible supercapacitor made of MoCx demonstrates a wide temperature range (-50 to 300 °C). Furthermore, the sculptured microstructures endow the carbide network with enhanced visible light absorption, providing high solar energy harvesting efficiency (~72 %) for steam generation. The laser-based, scalable, resilient, and low-cost manufacturing process presents an approach for construction of carbides and their subsequent applications.

11.
Adv Mater ; 30(50): e1805188, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368944

RESUMO

Low-dimensional (0/1/2 dimension) transition metal carbides (TMCs) possess intriguing electrical, mechanical, and electrochemical properties, and they serve as convenient supports for transition metal catalysts. Large-area single-crystalline 2D TMC sheets are generally prepared by exfoliating MXene sheets from MAX phases. Here, a versatile bottom-up method is reported for preparing ultrathin TMC sheets (≈10 nm in thickness and >100 µm in lateral size) with metal nanoparticle decoration. A gelatin hydrogel is employed as a scaffold to coordinate metal ions (Mo5+ , W6+ , Co2+ ), resulting in ultrathin-film morphologies of diverse TMC sheets. Carbonization of the scaffold at 600 °C presents a facile route to the corresponding MoCx , WCx , CoCx , and to metal-rich hybrids (Mo2- x Wx C and W/Mo2 C-Co). Among these materials, the Mo2 C-Co hybrid provides excellent hydrogen evolution reaction (HER) efficiency (Tafel slope of 39 mV dec-1 and 48 mVj = 10 mA cm-2 in overpotential in 0.5 m H2 SO4 ). Such performance makes Mo2 C-Co a viable noble-metal-free catalyst for the HER, and is competitive with the standard platinum on carbon support. This template-assisted, self-assembling, scalable, and low-cost manufacturing process presents a new tactic to construct low-dimensional TMCs with applications in various clean-energy-related fields.

12.
ACS Appl Mater Interfaces ; 10(31): 26357-26364, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30004667

RESUMO

High-voltage energy-storage devices are quite commonly needed for robots and dielectric elastomers. This paper presents a flexible high-voltage microsupercapacitor (MSC) with a planar in-series architecture for the first time based on laser-induced graphene. The high-voltage devices are capable of supplying output voltages ranging from a few to thousands of volts. The measured capacitances for the 1, 3, and 6 V MSCs were 60.5, 20.7, and 10.0 µF, respectively, under an applied current of 1.0 µA. After the 5000-cycle charge-discharge test, the 6 V MSC retained about 97.8% of the initial capacitance. It also was recorded that the all-solid-state 209 V MSC could achieve a high capacitance of 0.43 µF at a low applied current of 0.2 µA and a capacitance of 0.18 µF even at a high applied current of 5.0 µA. We further demonstrate the robust function of our flexible high-voltage MSCs by using them to power a piezoresistive microsensor (6 V) and a walking robot (>2000 V). Considering the simple, direct, and cost-effective fabrication method of our laser-fabricated flexible high-voltage MSCs, this work paves the way and lays the foundation for high-voltage energy-storage devices.

13.
Adv Mater ; 30(26): e1800062, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29761564

RESUMO

Versatile and low-cost manufacturing processes/materials are essential for the development of paper electronics. Here, a direct-write laser patterning process is developed to make conductive molybdenum carbide-graphene (MCG) composites directly on paper substrates. The hierarchically porous MCG structures are converted from fibrous paper soaked with the gelatin-mediated inks containing molybdenum ions. The resulting Mo3 C2 and graphene composites are mechanically stable and electrochemically active for various potential applications, such as electrochemical ion detectors and gas sensors, energy harvesters, and supercapacitors. Experimentally, the electrical conductivity of the composite is resilient to mechanical deformation with less than 5% degradation after 750 cycles of 180° repeated folding tests. As such, the direct laser conversion of MCGs on papers can be applicable for paper-based electronics, including the 3D origami folding structures.

14.
Microsyst Nanoeng ; 4: 36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31057924

RESUMO

The recent developments in material sciences and rational structural designs have advanced the field of compliant and deformable electronics systems. However, many of these systems are limited in either overall stretchability or areal coverage of functional components. Here, we design a construct inspired by Kirigami for highly deformable micro-supercapacitor patches with high areal coverages of electrode and electrolyte materials. These patches can be fabricated in simple and efficient steps by laser-assisted graphitic conversion and cutting. Because the Kirigami cuts significantly increase structural compliance, segments in the patches can buckle, rotate, bend and twist to accommodate large overall deformations with only a small strain (<3%) in active electrode areas. Electrochemical testing results have proved that electrical and electrochemical performances are preserved under large deformation, with less than 2% change in capacitance when the patch is elongated to 382.5% of its initial length. The high design flexibility can enable various types of electrical connections among an array of supercapacitors residing in one patch, by using different Kirigami designs.

15.
Adv Mater ; 30(5)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29227556

RESUMO

While electrochemical supercapacitors often show high power density and long operation lifetimes, they are plagued by limited energy density. Pseudocapacitive materials, in contrast, operate by fast surface redox reactions and are shown to enhance energy storage of supercapacitors. Furthermore, several reported systems exhibit high capacitance but restricted electrochemical voltage windows, usually no more than 1 V in aqueous electrolytes. Here, it is demonstrated that vertically aligned carbon nanotubes (VACNTs) with uniformly coated, pseudocapacitive titanium disulfide (TiS2 ) composite electrodes can extend the stable working range to over 3 V to achieve a high capacitance of 195 F g-1 in an Li-rich electrolyte. A symmetric cell demonstrates an energy density of 60.9 Wh kg-1 -the highest among symmetric pseudocapacitors using metal oxides, conducting polymers, 2D transition metal carbides (MXene), and other transition metal dichalcogenides. Nanostructures prepared by an atomic layer deposition/sulfurization process facilitate ion transportation and surface reactions to result in a high power density of 1250 W kg-1 with stable operation over 10 000 cycles. A flexible solid-state supercapacitor prepared by transferring the TiS2 -VACNT composite film onto Kapton tape is demonstrated to power a 2.2 V light emitting diode (LED) for 1 min.

16.
Small ; 13(34)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28696561

RESUMO

An ultraviolet detector is demonstrated through a whole-wafer, thin diamond film transfer process to realize the heterojunction between graphene and microcrystalline diamond (MCD). Conventional direct transfer processes fail to deposit graphene onto the top surface of the MCD film. However, it is found that the 2 µm thick MCD diamond film can be easily peeled off from the growth silicon substrate to expose its smooth backside for the graphene transfer process for high-quality graphene/MCD heterojunctions. A vertical graphene/MCD/metal structure is constructed as the photodiode device using graphene as the transparent top electrode for solar-blind ultraviolet sensing with high responsivity and gain factor. As such, this material system and device architecture could serve as the platform for next-generation optoelectronic systems.

17.
ACS Appl Mater Interfaces ; 7(50): 27765-70, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26592741

RESUMO

Electrospinning, a process that converts a solution or melt droplet into an ejected jet under a high electric field, is a well-established technique to produce one-dimensional (1D) fibers or two-dimensional (2D) randomly arranged fibrous meshes. Nevertheless, the direct electrospinning of fibers into controllable three-dimensional (3D) architectures is still a nascent technology. Here, we apply near-field electrospinning (NFES) to directly write arbitrarily shaped 3D structures through consistent and spatially controlled fiber-by-fiber stacking of polyvinylidene fluoride (PVDF) fibers. An element central to the success of this 3D electrospinning is the use of a printing paper placed on the grounded conductive plate and acting as a fiber collector. Once deposited on the paper, residual solvents from near-field electrospun fibers can infiltrate the paper substrate, enhancing the charge transfer between the deposited fibers and the ground plate via the fibrous network within the paper. Such charge transfer grounds the deposited fibers and turns them into locally fabricated electrical poles, which attract subsequent in-flight fibers to deposit in a self-aligned manner on top of each other. This process enables the design and controlled fabrication of electrospun 3D structures such as grids, walls, hollow cylinders, and other 3D logos. As such, this technique has the potential to advance the existing electrospinning technologies in constructing 3D structures for biomedical, microelectronics, and MEMS/NMES applications.

18.
Nano Lett ; 13(8): 3524-30, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23898882

RESUMO

Carbon nanotube (CNT) forests were grown directly on a silicon substrate using a Fe/Al/Mo stacking layer which functioned as both the catalyst material and subsequently a conductive current collecting layer in pseudocapacitor applications. A vacuum-assisted, in situ electrodeposition process has been used to achieve the three-dimensional functionalization of CNT forests with inserted nickel nanoparticles as pseudocapacitor electrodes. Experimental results have shown the measured specific capacitance of 1.26 F/cm(3), which is 5.7 times higher than pure CNT forest samples, and the oxidized nickel nanoparticle/CNT supercapacitor retained 94.2% of its initial capacitance after 10,000 cyclic voltammetry tests.

19.
Langmuir ; 27(19): 11742-6, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21875144

RESUMO

Through a simple room-temperature photoreduction process, this letter conformally replicates 3D submicrometer structures of wing scales from two butterfly species into Ag to generate practical surface-enhanced Raman scattering (SERS) substrates. The Ag replicas of butterfly scales with higher structural periodicity are able to detect rhodamine 6G at a low concentration down to 10(-9) M, which is three orders of magnitude lower than the detectable concentration limit of using quasi-periodic Ag butterfly structures. This result presents a way to select suitable scale morphologies from 174,500 species of Lepidopterans to replicate, as consumable SERS substrates with low cost and high reproducibility.


Assuntos
Prata/química , Animais , Borboletas , Oxirredução , Tamanho da Partícula , Processos Fotoquímicos , Rodaminas/análise , Análise Espectral Raman , Propriedades de Superfície , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...