Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 387(11): 1053-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25116441

RESUMO

Nitric oxide plays an important role in various biological processes including antinociception. The control of its local concentration is crucial for obtaining the desired effect and can be achieved with exogenous nitric oxide-carriers such as ruthenium complexes. Therefore, we evaluated the analgesic effect and mechanism of action of the ruthenium nitric oxide donor [Ru(HEDTA)NO] focusing on the role of cytokines, oxidative stress and activation of the cyclic guanosine monophosphate/protein kinase G/ATP-sensitive potassium channel signaling pathway. It was observed that [Ru(HEDTA)NO] inhibited in a dose-dependent (1-10 mg/kg) manner the acetic acid-induced writhing response. At the dose of 1 mg/kg, [Ru(HEDTA)NO] inhibited the phenyl-p-benzoquinone-induced writhing response, and formalin- and complete Freund's adjuvant-induced licking and flinching responses. Systemic and local treatments with [Ru(HEDTA)NO] also inhibited the carrageenin-induced mechanical hyperalgesia and increase of myeloperoxidase activity in paw skin samples. Mechanistically, [Ru(HEDTA)NO] inhibited carrageenin-induced production of the hyperalgesic cytokines tumor necrosis factor-α and interleukin-1ß, and decrease of reduced glutathione levels. Furthermore, the inhibitory effect of [Ru(HEDTA)NO] in the carrageenin-induced hyperalgesia and myeloperoxidase activity was prevented by the treatment with ODQ (soluble guanylyl cyclase inhibitor), KT5823 (protein kinase G inhibitor) and glybenclamide (ATP-sensitive potassium channel inhibitor), indicating that [Ru(HEDTA)NO] inhibits inflammatory hyperalgesia by activating the cyclic guanosine monophosphate/protein kinase G/ATP-sensitive potassium channel signaling pathway, respectively. These results demonstrate that [Ru(HEDTA)NO] exerts its analgesic effect in inflammation by inhibiting pro-nociceptive cytokine production, oxidative imbalance and activation of the nitric oxide/cyclic guanosine monophosphate/protein kinase G/ATP-sensitive potassium channel signaling pathway in mice.


Assuntos
Hiperalgesia/tratamento farmacológico , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Compostos de Rutênio/farmacologia , Animais , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ácido Edético/administração & dosagem , Ácido Edético/análogos & derivados , Ácido Edético/química , Inflamação/tratamento farmacológico , Canais KATP/metabolismo , Masculino , Camundongos , Doadores de Óxido Nítrico/administração & dosagem , Doadores de Óxido Nítrico/química , Nociceptividade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Rutênio/administração & dosagem , Compostos de Rutênio/química , Transdução de Sinais/efeitos dos fármacos
2.
Langmuir ; 22(1): 203-8, 2006 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-16378421

RESUMO

The reaction of NO and the immobilized dimer complex (edta)(2)Ru(2)(III(1/2),III(1/2)) on silica gel chemically modified with [3-(2-aminoethyl)aminopropyl]trimethoxysilane (AEATS) produces the corresponding immobilized nitrosyl complex AEATS/Ru(II)NO(+). This compound, a monomer, was obtained by reducing the immobilized ruthenium dimer either electrochemically or with Eu(II) and reacting this species with NO(2)(-) ions. The properties of [Ru(edta)NO](-) in solution and anchored (AEATS/Ru(II)NO(+)) on silica were compared using electrochemical (DPV, CV) and spectroscopic (IR, UV-vis, and ESR) techniques. The results indicate that immobilization does not alter the reactivity of the ruthenium complex and confirm that [Ru(edta)(H(2)O)](2)(-) may be used, either in solution or immobilized, as a catalyst for the conversion of NO(2)(-) to NO(+). Both the anchored nitrosyl complex AEATS/Ru(II)NO(+) and the [Ru(edta)NO](-) species in solution, upon one-electron reduction, liberate NO at comparable rates.

3.
Methods Enzymol ; 396: 45-53, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16291219

RESUMO

Electrochemical and spectrophotometric methods are described for measuring the rate of nitric oxide (NO) dissociation (k(NO)) from coordination compounds. Electrochemical methods based on double-potential step chronoamperometry and rotating ring-disc electrode voltammetry techniques proved to be suitable for measuring NO dissociation from 0.03 to 4.0 s(-1). The spectrophotometric method using an ancillary ligand as a colorimetric indicator is illustrated on measuring k(-NO)=0.002 s(-1). This methodology is limited only by the rate of the ancillary ligand substitution.


Assuntos
Eletroquímica/métodos , Metais/química , Óxido Nítrico/química , Espectrofotometria/métodos , Cinética , Oxirredução
4.
J Inorg Biochem ; 98(11): 1921-32, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15522418

RESUMO

The [Ru(II)(Hedta)NO(+)] complex is a diamagnetic species crystallizing in a distorted octahedral geometry, with the Ru-N(O) length 1.756(4) A and the RuNO angle 172.3(4) degrees . The complex contains one protonated carboxylate (pK(a)=2.7+/-0.1). The [Ru(II)(Hedta)NO(+)] complex undergoes a nitrosyl-centered one-electron reduction (chemical or electrochemical), with E(NO+/NO)=-0.31 V vs SCE (I=0.2 M, pH 1), yielding [Ru(II)(Hedta)NO](-), which aquates slowly: k(-NO)=2.1+/-0.4x10(-3) s(-1) (pH 1.0, I=0.2 M, CF(3)COOH/NaCF(3)COO, 25 degrees C). At pHs>12, the predominant species, [Ru(II)(edta)NO](-), reacts according to [Ru(II)(edta)NO](-)+2OH(-)-->[Ru(II)(edta)NO(2)](3-), with K(eq)=1.0+/-0.4 x 10(3) M(-2) (I=1.0 M, NaCl; T=25.0+/-0.1 degrees C). The rate-law is first order in each of the reactants for most reaction conditions, with k(OH(-))=4.35+/-0.02 M(-1)s(-1) (25.0 degrees C), assignable mechanistically to the elementary step comprising the attack of one OH(-) on [Ru(II)(edta)NO](-), with subsequent fast deprotonation of the [Ru(II)(edta)NO(2)H](2-) intermediate. The activation parameters were DeltaH(#)=60+/-1 kJ/mol, DeltaS(#)=-31+/-3 J/Kmol, consistent with a nucleophilic addition process between likely charged ions. In the toxicity up-and-down tests performed with Swiss mice, no death was observed in all the doses administered (3-9.08 x 10(-5) mol/kg). The biodistribution tests performed with Wistar male rats showed metal in the liver, kidney, urine and plasma. Eight hours after the injection no metal was detected in the samples. The vasodilator effect of [Ru(II)(edta)NO](-) was studied in aortic rings without endothelium, and was compared with sodium nitroprusside (SNP). The times of maximal effects of [Ru(II)(edta)NO](-) and SNP were 2 h and 12 min, respectively, suggesting that [Ru(II)(edta)NO](-) releases NO slowly to the medium in comparison with SNP.


Assuntos
Ácido Edético/análogos & derivados , Rutênio/química , Animais , Cristalografia por Raios X , Ácido Edético/química , Ácido Edético/farmacocinética , Eletroquímica , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Óxido Nítrico/química , Óxido Nítrico/farmacocinética , Rutênio/farmacocinética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...