Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857519

RESUMO

INTRODUCTION: Running economy (RE) deteriorates during prolonged running, although the effect of measuring energy cost (EC) or oxygen cost (OC) on the magnitude of these changes has not been investigated. Similarly, it is unknown if runners' performance level may influence the deterioration of RE during prolonged running. The aims of this study were to compare changes in EC and OC measurements of RE during a prolonged run in a large cohort of well-trained male runners, and to compare changes between runners of high and low performance standard. METHODS: Forty-four male runners (maximal oxygen uptake (V̇O2max) 62.4 ml·kg-1·min-1; 10 km time 35:50 ± 4:40 mm:ss) completed an incremental test determining lactate threshold 1 (LT1) and V̇O2max, and on a separate occasion, a 90 min run at LT1. Respiratory gases were collected at 15 min intervals. Subsequently, sub-groups of high- (HP, 10 km 31:20 ± 01:00 mm:ss) and low-performing (LP, 10 km 41:50 ± 01:20 mm:ss) runners were compared. RESULTS: RE deterioration was only fractionally larger when expressed as OC than EC (0.1% greater from 30-90 min; p < 0.001), perhaps due to the small change in RER (-0.01) in this study. For the HP group increases were lower than LP after 90 min in both EC (+2.3 vs +4.3%; p < 0.01) and OC (+2.4 vs +4.5%; p < 0.01). Similarly, at standardized distances, changes were lower for HP vs LP e.g. at 16.7 km +1.0 vs +3.2% for EC (p < 0.01), and + 1.2 vs +3.4% for OC (p < 0.001). CONCLUSIONS: The deterioration of RE was dependent on athlete's performance level, with HP runners displaying superior RE durability. The use of EC or OC had only a fractional influence on RE durability, although this may gain importance with larger shifts in substrate metabolism.

2.
J Sports Sci Med ; 23(1): 56-72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455449

RESUMO

ChatGPT may be used by runners to generate training plans to enhance performance or health aspects. However, the quality of ChatGPT generated training plans based on different input information is unknown. The objective of the study was to evaluate ChatGPT-generated six-week training plans for runners based on different input information granularity. Three training plans were generated by ChatGPT using different input information granularity. 22 quality criteria for training plans were drawn from the literature and used to evaluate training plans by coaching experts on a 1-5 Likert Scale. A Friedmann test assessed significant differences in quality between training plans. For training plans 1, 2 and 3, a median rating of <3 was given 19, 11, and 1 times, a median rating of 3 was given 3, 5, and 8 times and a median rating of >3 was given 0, 6, 13 times, respectively. Training plan 1 received significantly lower ratings compared to training plan 2 for 3 criteria, and 15 times significantly lower ratings compared to training plan 3 (p < 0.05). Training plan 2 received significantly lower ratings (p < 0.05) compared to plan 3 for 9 criteria. ChatGPT generated plans are ranked sub-optimally by coaching experts, although the quality increases when more input information are provided. An understanding of aspects relevant to programming distance running training is important, and we advise avoiding the use of ChatGPT generated training plans without an expert coach's feedback.


Assuntos
Tutoria , Corrida , Humanos
3.
3D Print Addit Manuf ; 11(1): 1-9, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38389696

RESUMO

Foam 3D printing in construction is a promising manufacturing approach that aims to reduce the amount of material, hazardous labor, and costs in producing lightweight and insulating building parts that can reduce the operational energy in buildings. Research using cement-free mineral foams derived from industrial waste showed great potential in previous studies that reduced the amount of concrete needed in composite structures. This article collates the latest developments in this line of work. It presents the material system with its principal components and the advanced robotic 3D printing setup with a climate-controlled fabrication chamber. Print path schemes and hybrid fabrication methods combining 3D printing and casting are evaluated. Furthermore, the article discusses the effect of different print path schemes on the thermal insulation and compressive strength performance of printed parts. A full-scale final prototype synthesizes these findings and demonstrates the fabrication of modular, lightweight, and insulating construction elements that can be assembled into monolithic wall structures. The advantages and challenges of this novel approach are elaborated on in the conclusions. Finally, the article presents future advancements required to leverage this research as a scalable construction method that can help address the biggest challenges in building low-carbon and energy-efficient structures.

4.
Soft Matter ; 16(34): 8002-8012, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32778860

RESUMO

Pickering stabilizers are typically considered to be perfectly smooth and chemically homogeneous. The use of rough and heterogeneous colloids is expected to fundamentally alter the properties of emulsions. In particular, we investigate the role of surface structuring in the emulsification and catastrophic phase inversion of Pickering emulsions. To gain deeper fundamental insights into this topic, we fabricate in a controlled and simple manner patchy rough particles with a polystyrene core and organosilicate asperities. As a consequence of the synthesis, the surface roughness and chemical heterogeneity are coupled, namely the chemical heterogeneity is directly connected with the surface patchiness. The synthesis is robust, scalable and leads to the production of grams in less than a day. The geometrical roughness is characterized with AFM, while the chemical composition is extracted from oxidative mass loss upon combustion. Wetting studies are empirically carried out using a gel trapping technique and the results are compared with the theoretically derived contact angles of particles. Systematic variations in the emulsification shear rate, oil/water ratio and particle type reveal the influence of particle heterogeneity on the formation and formulation of emulsions. This work paves the way for a deeper understanding of the behavior of Pickering emulsions, where non-ideal, heterogeneous particles are present.

5.
Soft Matter ; 15(39): 7888-7900, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31532443

RESUMO

The possibility to invert emulsions from oil-in-water to water-in-oil (or vice versa) in a closed system, i.e. without any formulation change, remains an open fundamental challenge with many opportunities for industrial applications. Here, we propose a mechanism that exploits particle surface roughness to induce metastable wetting and obtain mechanically-responsive Pickering emulsions. We postulate that the phase inversion is driven by an in situ switch of the particle wettability from metastable positions at the interface following the input of controlled mechanical energy. Oil-in-water emulsions can be prepared at low energy using mildly hydrophobic rough colloids, which are dispersed in water and weakly pinned at the interface, and switched to water-in-oil emulsions by a second emulsification at higher energy, which triggers the relaxation of the particle contact angle. The same principle is demonstrated for the complementary emulsions using mildly hydrophilic colloids initially dispersed in oil. Our experiments and simulations support that the delicate interplay between particle surface design during synthesis and the energy of the emulsification process can encode a kinetic pathway for the phase inversion. Both organic and inorganic nanoparticles can be used, allowing for the future implementation of our strategy in a broad range of smart industrial formulations.

6.
Proc Natl Acad Sci U S A ; 115(20): 5117-5122, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29717043

RESUMO

Surface roughness affects many properties of colloids, from depletion and capillary interactions to their dispersibility and use as emulsion stabilizers. It also impacts particle-particle frictional contacts, which have recently emerged as being responsible for the discontinuous shear thickening (DST) of dense suspensions. Tribological properties of these contacts have been rarely experimentally accessed, especially for nonspherical particles. Here, we systematically tackle the effect of nanoscale surface roughness by producing a library of all-silica, raspberry-like colloids and linking their rheology to their tribology. Rougher surfaces lead to a significant anticipation of DST onset, in terms of both shear rate and solid loading. Strikingly, they also eliminate continuous thickening. DST is here due to the interlocking of asperities, which we have identified as "stick-slip" frictional contacts by measuring the sliding of the same particles via lateral force microscopy (LFM). Direct measurements of particle-particle friction therefore highlight the value of an engineering-tribology approach to tuning the thickening of suspensions.

7.
Langmuir ; 34(16): 4861-4873, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29590753

RESUMO

Particle surface roughness and chemistry play a pivotal role in the design of new particle-based materials. Although the adsorption of rough particles has been studied in the literature, desorption of such particles remains poorly understood. In this work, we specifically focus on the detachment of rough and chemically modified raspberry-like microparticles from water/oil interfaces using colloidal-probe atomic force microscopy. We observe different contact-line dynamics occurring upon particle detachment (pinning vs sliding), depending on both the particle roughness and surface modification. In general, surface roughness leads to a reduction of the desorption force of hydrophobic particles into the oil and provides a multitude of pinning points that can be accessed by applying different loads. Our results hence suggest future strategies for stabilization and destabilization of Pickering emulsions and foams.

8.
Nat Commun ; 8: 15701, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28589932

RESUMO

Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.

9.
Phys Chem Chem Phys ; 19(13): 8671-8680, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28128829

RESUMO

Controlling the microstructure of monolayers of microgels confined at a water/oil interface is the key to their successful application as nanolithography masks after deposition on a solid substrate. Previous work demonstrated that compression of the monolayer can be used to tune the microgel arrangement and to explore the full two-dimensional area-pressure phase diagram of the particles trapped at the interface. Here, we explore a new size range, using microgels with 210 nm and 1.45 µm bulk diameters, respectively. We start by investigating the properties of isolated particles in situ at the interface by freeze-fracture cryo-SEM, and after deposition using an atomic force microscope. We then study their collective behavior in a compressed monolayer and highlight significant differences in terms of the accessible structural phases and their transitions. More specifically, the larger microgels behave similar to colloids with a hard core and a soft polymeric shell, exhibiting capillarity driven clustering at a large specific area and a solid-solid phase transition between two hexagonal lattices at higher compressions. The smaller particles instead show no aggregation and a smooth transition from a hexagonal lattice to a dense disordered monolayer. Finally, we demonstrate that the larger microgels can be effectively turned into masks for the fabrication of vertically aligned silicon nanowires by means of metal-assisted chemical etching. These findings highlight the subtle interplay between particle architecture, adsorption and interactions at the interface, the understanding and harnessing of which are at the basis of their successful use as nanopatterning tools.

10.
Langmuir ; 32(50): 13446-13457, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27935304

RESUMO

Edible solid particles constitute an attractive alternative to surfactants as stabilizers of food-grade emulsions for products requiring a long-term shelf life. Here, we report on a new approach to stabilize edible emulsions using silica nanoparticles modified by noncovalently bound chitosan oligomers. Electrostatic modification with chitosan increases the hydrophobicity of the silica nanoparticles and favors their adsorption at the oil-water interface. The interfacial adsorption of the chitosan-modified silica particles enables the preparation of oil-in-water emulsions with small droplet sizes of a few micrometers through high-pressure homogenization. This approach enables the stabilization of food-grade emulsions for more than 3 months. The emulsion structure and stability can be effectively tuned by controlling the extent of chitosan adsorption on the silica particles. Bulk and interfacial rheology are used to highlight the two stabilization mechanisms involved. Low chitosan concentration (1 wt % with respect to silica) leads to the formation of a viscoelastic film of particles adsorbed at the oil-water interface, enabling Pickering stabilization of the emulsion. By contrast, a network of agglomerated particles formed around the droplets is the predominant stabilization mechanism of the emulsions at higher chitosan content (5 wt % with respect to silica). These two pathways against droplet coalescence and coarsening open up different possibilities to engineer the long-term stabilization of emulsions for food applications.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Emulsões/química , Nanopartículas , Dióxido de Silício , Adsorção
11.
Soft Matter ; 12(36): 7632-43, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27531425

RESUMO

Microparticle adsorption and self-assembly at fluid interfaces are strongly affected by the particle three-phase contact angle θ. On the single-particle level, θ can be determined by several techniques, including colloidal-probe AFM, the gel-trapping technique (GTT) and the freeze-fracture shadow-casting (FreSCa) method. While GTT and FreSCa provide contact angle distributions measured over many particles, colloidal-probe AFM measures the wettability of an individual (specified) particle attached onto an AFM cantilever. In this paper, we extract θ for smooth microparticles through the analysis of force-distance curves upon particle approach and retraction from the fluid interface. From each retraction curve, we determine: (i) the maximal force, Fmax; (ii) the detachment distance, Dmax; and (iii) the work for quasistatic detachment, W. To relate Fmax, Dmax and W to θ, we developed a detailed theoretical model based on the capillary theory of flotation. The model was validated in three different ways. First, the contact angles, evaluated from Fmax, Dmax and W, are all close in value and were used to calculate the entire force-distance curves upon particle retraction without any adjustable parameters. Second, the model was successfully applied to predict the experimental force-distance curve of a truncated sphere, whose cut is positioned below the point of particle detachment from the interface. Third, our theory was confirmed by the excellent agreement between the particle contact angles obtained from the colloidal-probe AFM data and the ensemble-average contact angles measured by both GTT and FreSCa. Additionally, we devised a very accurate closed-form expression for W (representing the energy barrier for particle detachment), thus extending previous results in the literature.

12.
J Phys Condens Matter ; 28(31): 313002, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27299800

RESUMO

Micro and nanoparticles at fluid interfaces have been attracting increasing interest in the last few decades as building blocks for materials, as mechanical and structural probes for complex interfaces and as models for two-dimensional systems. The three-phase contact angle enters practically all aspects of the particle behavior at the interface: its thermodynamics (binding energy to the interface), dynamics (motion and drag at the interface) and interactions with the interface (adsorption and wetting). Moreover, many interactions among particles at the interface also strongly depend on the contact angle. These concepts have been extensively discussed for non-deformable, homogeneous and mostly spherical particles, but recent progress in particle synthesis and fabrication has instead moved in the direction of producing more complex micro and nanoscale objects, which can be responsive, deformable, heterogenous and/or anisotropic in shape, surface chemistry and material properties. These new particles have a much greater potential for applications and new science, and the study of their behavior at interfaces has only very recently started. In this paper, we critically review the current state of the art of the experimental methods available to measure the contact angle of micro and nanoparticles at fluid interfaces, indicating their strengths and limitations. We then comment on new particle systems that are currently attracting increasing interest in relation to their adsorption and assembly at fluid interfaces and discuss if and which ones of the current techniques are suited to investigate their properties at interfaces. Based on this discussion, we will finally try to indicate a direction in which new experimental methods should develop in the future to tackle the new challenges posed by the novel types of particles that more and more often are used at interfaces.

13.
Nano Lett ; 16(1): 157-63, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26672801

RESUMO

We demonstrate a fabrication breakthrough to produce large-area arrays of vertically aligned silicon nanowires (VA-SiNWs) with full tunability of the geometry of the single nanowires and of the whole array, paving the way toward advanced programmable designs of nanowire platforms. At the core of our fabrication route, termed "Soft Nanoparticle Templating", is the conversion of gradually compressed self-assembled monolayers of soft nanoparticles (microgels) at a water-oil interface into customized lithographical masks to create VA-SiNW arrays by means of metal-assisted chemical etching (MACE). This combination of bottom-up and top-down techniques affords excellent control of nanowire etching site locations, enabling independent control of nanowire spacing, diameter and height in a single fabrication route. We demonstrate the fabrication of centimeter-scale two-dimensional gradient photonic crystals exhibiting continuously varying structural colors across the entire visible spectrum on a single silicon substrate, and the formation of tunable optical cavities supported by the VA-SiNWs, as unambiguously demonstrated through numerical simulations. Finally, Soft Nanoparticle Templating is combined with optical lithography to create hierarchical and programmable VA-SiNW patterns.


Assuntos
Nanopartículas/química , Nanotecnologia , Nanofios/química , Silício/química , Metais/química , Óptica e Fotônica
14.
Gels ; 2(3)2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-30674151

RESUMO

Monolayers of colloidal particles trapped at an interface between two immiscible fluids play a pivotal role in many applications and act as essential models in fundamental studies. One of the main advantages of these systems is that non-close packed monolayers with tunable inter-particle spacing can be formed, as required, for instance, in surface patterning and sensing applications. At the same time, the immobilization of particles locked into desired structures to be transferred to solid substrates remains challenging. Here, we describe three different strategies to immobilize monolayers of polystyrene microparticles at water⁻decane interfaces. The first route is based on the leaking of polystyrene oligomers from the particles themselves, which leads to the formation of a rigid interfacial film. The other two rely on in situ interfacial polymerization routes that embed the particles into a polymer membrane. By tracking the motion of the colloids at the interface, we can follow in real-time the formation of the polymer membranes and we interestingly find that the onset of the polymerization reaction is accompanied by an increase in particle mobility determined by Marangoni flows at the interface. These results pave the way for future developments in the realization of thin tailored composite polymer-particle membranes.

15.
Langmuir ; 31(25): 6965-70, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26061672

RESUMO

We report on robust synthetic microcompartments with hydrophobically gated shells that can reversibly swell and contract multiple times upon external stimuli. The gating mechanism relies on a hydrophilic-hydrophobic transition of a polymer layer that is grafted on inorganic colloidosomes using atom-transfer radical polymerization. As a result of such a transition, the initially tight hydrophobic shell becomes permeable to the diffusion of hydrophilic solutes across the microcompartment walls. Surprisingly, the microcompartments are strong enough to retain their spherical shape during several swelling and contraction cycles. This provides a powerful alternative platform for the creation of synthetic microreactors and protocells that interact with the surrounding media through a simple gating mechanism and are sufficiently robust for further engineering of increasingly complex compartmentalized structures.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Nylons/química , Difusão , Polimerização
16.
Nutr Metab (Lond) ; 11: 25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24966877

RESUMO

BACKGROUND: Obesity is associated with development of the cardiorenal metabolic syndrome, which is a constellation of risk factors, such as insulin resistance, inflammatory response, dyslipidemia, and high blood pressure that predispose affected individuals to well-characterized medical conditions such as diabetes, cardiovascular and kidney chronic disease. The study was designed to establish relationship between metabolic and inflammatory disorder, renal sodium retention and enhanced blood pressure in a group of obese subjects compared with age-matched, lean volunteers. METHODS: The study was performed after 14 h overnight fast after and before OGTT in 13 lean (BMI 22.92 ± 2.03 kg/m(2)) and, 27 obese (BMI 36.15 ± 3.84 kg/m(2)) volunteers. Assessment of HOMA-IR and QUICKI index were calculated and circulating concentrations of TNF-α, IL-6 and C-reactive protein, measured by immunoassay. RESULTS: THE STUDY SHOWS THAT A HYPERINSULINEMIC (HI: 10.85 ± 4.09 µg/ml) subgroup of well-characterized metabolic syndrome bearers-obese subjects show higher glycemic and elevated blood pressure levels when compared to lean and normoinsulinemic (NI: 5.51 ± 1.18 µg/ml, P < 0.027) subjects. Here, the combination of hyperinsulinemia, higher HOMA-IR (HI: 2.19 ± 0.70 (n = 12) vs. LS: 0.83 ± 0.23 (n = 12) and NI: 0.98 ± 0.22 (n = 15), P < 0.0001) associated with lower QUICKI in HI obese when compared with LS and NI volunteers (P < 0.0001), suggests the occurrence of insulin resistance and a defect in insulin-stimulated peripheral action. Otherwise, the adiponectin measured in basal period was significantly enhanced in NI subjects when compared to HI groups (P < 0.04). The report also showed a similar insulin-mediated reduction of post-proximal urinary sodium excretion in lean (LS: 9.41 ± 0.68% vs. 6.38 ± 0.92%, P = 0.086), and normoinsulinemic (NI: 8.41 ± 0.72% vs. 5.66 ± 0.53%, P = 0.0025) and hyperinsulinemic obese subjects (HI: 8.82 ± 0.98% vs. 6.32 ± 0.67%, P = 0.0264), after oral glucose load, despite elevated insulinemic levels in hyperinsulinemic obeses. CONCLUSION: In conclusion, this study highlights the importance of adiponectin levels and dysfunctional inflammatory modulation associated with hyperinsulinemia and peripheral insulin resistance, high blood pressure, and renal dysfunction in a particular subgroup of obeses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...