Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(6): 1540-1554, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806670

RESUMO

Epstein-Barr virus (EBV) is an aetiologic risk factor for the development of multiple sclerosis (MS). However, the role of EBV-infected B cells in the immunopathology of MS is not well understood. Here we characterized spontaneous lymphoblastoid cell lines (SLCLs) isolated from MS patients and healthy controls (HC) ex vivo to study EBV and host gene expression in the context of an individual's endogenous EBV. SLCLs derived from MS patient B cells during active disease had higher EBV lytic gene expression than SLCLs from MS patients with stable disease or HCs. Host gene expression analysis revealed activation of pathways associated with hypercytokinemia and interferon signalling in MS SLCLs and upregulation of forkhead box protein 1 (FOXP1), which contributes to EBV lytic gene expression. We demonstrate that antiviral approaches targeting EBV replication decreased cytokine production and autologous CD4+ T cell responses in this ex vivo model. These data suggest that dysregulation of intrinsic B cell control of EBV gene expression drives a pro-inflammatory, pathogenic B cell phenotype that can be attenuated by suppressing EBV lytic gene expression.


Assuntos
Linfócitos B , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Esclerose Múltipla , Humanos , Herpesvirus Humano 4/genética , Esclerose Múltipla/virologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/complicações , Citocinas/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Transcriptoma , Replicação Viral , Regulação Viral da Expressão Gênica , Linhagem Celular , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Perfilação da Expressão Gênica , Adulto , Feminino , Masculino
2.
Blood ; 142(20): 1724-1739, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37683180

RESUMO

Aberrant skipping of coding exons in CD19 and CD22 compromises the response to immunotherapy in B-cell malignancies. Here, we showed that the MS4A1 gene encoding human CD20 also produces several messenger RNA (mRNA) isoforms with distinct 5' untranslated regions. Four variants (V1-4) were detected using RNA sequencing (RNA-seq) at distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma, only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform contained upstream open reading frames and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, whereas V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed chimeric antigen receptor T cells were able to kill both V3- and V1-expressing cells, but the bispecific T-cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on 4 postmosunetuzumab follicular lymphoma relapses and discovered that in 2 of them, the downregulation of CD20 was accompanied by a V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias , Humanos , Processamento Alternativo , RNA Mensageiro/genética , Regiões 5' não Traduzidas , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Antígenos CD20/genética , Isoformas de Proteínas/genética , Imunoterapia , Biossíntese de Proteínas , Neoplasias/genética
3.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645778

RESUMO

Aberrant skipping of coding exons in CD19 and CD22 compromises responses to immunotherapy for B-cell malignancies. Here, we show that the MS4A1 gene encoding human CD20 also produces several mRNA isoforms with distinct 5' untranslated regions (5'-UTR). Four variants (V1-4) were detectable by RNA-seq in distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant by far. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform was found to contain upstream open reading frames (uORFs) and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching Morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, while V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed CAR T cells were able to kill both V3- and V1-expressing cells, but the bispecific T cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on four post-mosunetuzumab follicular lymphoma relapses and discovered that in two of them downregulation of CD20 was accompanied by the V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies. Key Points: In normal & malignant human B cells, CD20 mRNA is alternatively spliced into four 5'-UTR isoforms, some of which are translation-deficient.The balance between translation-deficient and -competent isoforms modulates CD20 protein levels & responses to CD20-directed immunotherapies. Explanation of Novelty: We discovered that in normal and malignant B-cells, CD20 mRNA is alternatively spliced to generate four distinct 5'-UTRs, including the longer translation-deficient V1 variant. Cells predominantly expressing V1 were still sensitive to CD20-targeting chimeric antigen receptor T-cells. However, they were resistant to the bispecific anti-CD3/CD20 antibody mosunetuzumab, and the shift to V1 were observed in CD20-negative post-mosunetuzumab relapses of follicular lymphoma.

4.
J Virol ; 97(8): e0065323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37578230

RESUMO

HIV-infected macrophages are long-lived cells that represent a barrier to functional cure. Additionally, low-level viral expression by central nervous system (CNS) macrophages contributes to neurocognitive deficits that develop despite antiretroviral therapy (ART). We recently identified H3K9me3 as an atypical epigenetic mark associated with chronic HIV infection in macrophages. Thus, strategies are needed to suppress HIV-1 expression in macrophages, but the unique myeloid environment and the responsible macrophage/CNS-tropic strains require cell/strain-specific approaches. Here, we generated an HIV-1 reporter virus from a CNS-derived strain with intact auxiliary genes expressing destabilized luciferase. We employed this reporter virus in polyclonal infection of primary human monocyte-derived macrophages (MDM) for a high-throughput screen (HTS) to identify compounds that suppress virus expression from established macrophage infection. Screening ~6,000 known drugs and compounds yielded 214 hits. A secondary screen with 10-dose titration identified 24 meeting criteria for HIV-selective activity. Using three replication-competent CNS-derived macrophage-tropic HIV-1 isolates and viral gene expression readout in MDM, we confirmed the effect of three purine analogs, nelarabine, fludarabine, and entecavir, showing the suppression of HIV-1 expression from established macrophage infection. Nelarabine inhibited the formation of H3K9me3 on HIV genomes in macrophages. Thus, this novel HTS assay can identify suppressors of HIV-1 transcription in established macrophage infection, such as nucleoside analogs and HDAC inhibitors, which may be linked to H3K9me3 modification. This screen may be useful to identify new metabolic and epigenetic agents that ameliorate HIV-driven neuroinflammation in people on ART or prevent viral recrudescence from macrophage reservoirs in strategies to achieve ART-free remission. IMPORTANCE Macrophages infected by HIV-1 are a long-lived reservoir and a barrier in current efforts to achieve HIV cure and also contribute to neurocognitive complications in people despite antiretroviral therapy (ART). Silencing HIV expression in these cells would be of great value, but the regulation of HIV-1 in macrophages differs from T cells. We developed a novel high-throughput screen for compounds that can silence established infection of primary macrophages, and identified agents that downregulate virus expression and alter provirus epigenetic profiles. The significance of this assay is the potential to identify new drugs that act in the unique macrophage environment on relevant viral strains, which may contribute to adjunctive treatment for HIV-associated neurocognitive disorders and/or prevent viral rebound in efforts to achieve ART-free remission or cure.


Assuntos
Infecções por HIV , HIV-1 , Histonas , Macrófagos , Humanos , Ensaios de Triagem em Larga Escala , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Macrófagos/virologia , Nucleosídeos/farmacologia , Provírus/genética , Replicação Viral , Epigênese Genética , Histonas/genética , Genoma Viral
5.
Cell Host Microbe ; 31(1): 58-68.e5, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36459997

RESUMO

Redondoviruses are circular Rep-encoding single-stranded DNA (CRESS) viruses of high prevalence in healthy humans. Redondovirus abundance is increased in oro-respiratory samples from individuals with periodontitis, acute illness, and severe COVID-19. We investigated potential host cells supporting redondovirus replication in oro-respiratory samples and uncovered the oral amoeba Entamoeba gingivalis as a likely host. Redondoviruses are closely related to viruses of Entamoeba and contain reduced GC nucleotide content, consistent with Entamoeba hosts. Redondovirus and E. gingivalis co-occur in metagenomic data from oral disease and healthy human cohorts. When grown in xenic cultures with feeder bacteria, E. gingivalis was robustly positive for redondovirus RNA and DNA. A DNA proximity-ligation assay (Hi-C) on xenic culture cells showed enriched cross-linking of redondovirus and Entamoeba DNA, supporting E. gingivalis as the redondovirus host. While bacteria are established hosts for bacteriophages within the human virome, this work shows that eukaryotic commensals also contribute an abundant human-associated virus.


Assuntos
Bacteriófagos , COVID-19 , Entamoeba , Periodontite , Vírus , Humanos , Entamoeba/genética , Bactérias
6.
J Leukoc Biol ; 112(3): 569-576, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35621385

RESUMO

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV2), which causes the disease COVID-19, has caused an unprecedented global pandemic. Angiotensin-converting enzyme 2 (ACE2) is the major cellular receptor for SARS-CoV2 entry, which is facilitated by viral Spike priming by cellular TMPRSS2. Macrophages play an important role in innate viral defense and are also involved in aberrant immune activation that occurs in COVID-19, and thus direct macrophage infection might contribute to severity of SARS-CoV2 infection. Here, we demonstrate that monocytes and monocyte-derived macrophages (MDM) under in vitro conditions express low-to-undetectable levels of ACE2 and TMPRSS2 and minimal coexpression. Expression of these receptors remained low in MDM induced to different subtypes such as unpolarized, M1 and M2 polarized. Untreated, unpolarized, M1 polarized, and M2 polarized MDM were all resistant to infection with SARS-CoV2 pseudotyped virions. These findings suggest that direct infection of myeloid cells is unlikely to be a major mechanism of SARS-CoV2 pathogenesis. Summary sentence: Monocytes and macrophages express minimal ACE2 and TMPRSS2 and resist SARS-CoV-2 Spike-mediated infection, suggesting direct myeloid cell infection is unlikely a major contributor to pathogenesis.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Macrófagos , Monócitos , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/imunologia , Resistência à Doença , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Monócitos/metabolismo , Monócitos/virologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , RNA Viral , SARS-CoV-2 , Serina Endopeptidases/metabolismo
7.
J Virol ; 96(7): e0016222, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35319230

RESUMO

Human immunodeficiency virus (HIV)-infected macrophages are long-lived cells that sustain persistent virus expression, which is both a barrier to viral eradication and contributor to neurological complications in patients despite antiretroviral therapy (ART). To better understand the regulation of HIV-1 in macrophages, we compared HIV-infected primary human monocyte-derived macrophages (MDM) to acutely infected primary CD4 T cells and Jurkat cells latently infected with HIV (JLAT 8.4). HIV genomes in MDM were actively transcribed despite enrichment with heterochromatin-associated H3K9me3 across the complete HIV genome in combination with elevated activation marks of H3K9ac and H3K27ac at the long terminal repeat (LTR). Macrophage patterns contrasted with JLAT cells, which showed conventional bivalent H3K4me3/H3K27me3, and acutely infected CD4 T cells, which showed an intermediate epigenotype. 5'-Methylcytosine (5mC) was enriched across the HIV genome in latently infected JLAT cells, while 5'-hydroxymethylcytosine (5hmC) was enriched in CD4 cells and MDMs. HIV infection induced multinucleation of MDMs along with DNA damage-associated p53 phosphorylation, as well as loss of TET2 and the nuclear redistribution of 5-hydoxymethylation. Taken together, our findings suggest that HIV induces a unique macrophage nuclear and transcriptional profile, and viral genomes are maintained in a noncanonical bivalent epigenetic state. IMPORTANCE Macrophages serve as a reservoir for long-term persistence and chronic production of HIV. We found an atypical epigenetic control of HIV in macrophages marked by heterochromatic H3K9me3 despite active viral transcription. HIV infection induced changes in macrophage nuclear morphology and epigenetic regulatory factors. These findings may identify new mechanisms to control chronic HIV expression in infected macrophages.


Assuntos
Infecções por HIV , HIV-1 , Macrófagos , Linfócitos T CD4-Positivos , Epigênese Genética , Genoma Viral , Infecções por HIV/genética , HIV-1/genética , Humanos , Células Jurkat , Macrófagos/virologia , Latência Viral/genética , Replicação Viral
8.
Hum Vaccin Immunother ; 16(9): 2156-2164, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32463327

RESUMO

Hepatitis B virus (HBV) causes a potentially life-threatening liver infection that frequently results in life-long chronic infection. HBV is responsible for 887,000 deaths each year, most resulting from chronic liver diseases and hepatocellular carcinoma. Presently, there are 250 million chronic HBV carriers worldwide who are at a high risk for developing cirrhosis and hepatocellular carcinoma (HCC). HCC is the most common type of liver cancer with a strong association with HBV infection. HBV transmission through blood transfusions and perinatal transfer from infected mother to child have been common routes of infection. In the present study, we describe the development of a synthetic DNA plasmid encoding an anti-HBV human monoclonal antibody specific for the common "a determinant region" of HBsAg of hepatitis B virus and demonstrate the ability of this platform at directing in vivo antibody expression. In vivo delivery of this DNA encoded monoclonal antibody (DMAb) plasmid in mice resulted in expression of human IgG over a period of one month following a single injection. Serum antibody was found to recognize the relevant conformational epitope from plasma purified native HBsAg as well as bound HBV in HepG2.2.15 cells. The serum DMAb efficiently neutralized HBV and prevented infection of HepaRG cells in vitro. Additional study of these HBV-DMAb as a possible therapy or immunoprophylaxis for HBV infection is warranted.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Animais , Anticorpos Monoclonais , DNA Viral/genética , Feminino , Hepatite B/prevenção & controle , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/genética , Transmissão Vertical de Doenças Infecciosas , Camundongos
9.
Oncoimmunology ; 8(1): e1515058, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30546956

RESUMO

Ovarian cancer is frequently diagnosed as peritoneal carcinomatosis. Unlike other tumor locations, the peritoneal cavity is commonly exposed to gut-breaching and ascending genital microorganisms and has a unique immune environment. IL-33 is a local cytokine that can activate innate and adaptive immunity. We studied the effectiveness of local IL-33 delivery in the treatment of cancer that has metastasized to the peritoneal cavity. Direct peritoneal administration of IL-33 delayed the progression of metastatic peritoneal cancer. Prolongation in survival was not associated with a direct effect of IL-33 on tumor cells, but with major changes in the immune microenvironment of the tumor. IL-33 promoted a significant increase in the leukocyte compartment of the tumor immunoenvironment and an allergic cytokine profile. We observed a substantial increase in the number of activated CD4+ T-cells accompanied by peritoneal eosinophil infiltration, B-cell activation and activation of peritoneal macrophages which displayed tumoricidal capacity. Depletion of CD4+ cells, eosinophils or macrophages reduced the anti-tumor effects of IL-33 but none of these alone were sufficient to completely abrogate its positive benefit. In conclusion, local administration of IL-33 generates an allergic tumor environment resulting in a novel approach for treatment of metastatic peritoneal malignancies, such as advanced ovarian cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...