RESUMO
The propensity of bacteria to grow collectively in communities known as biofilms and their ability to overcome clinical treatments in this condition has become a major medical problem, emphasizing the need for anti-biofilm strategies. Antagonistic microbial interactions have extensively served as searching platforms for antibiotics, but their potential as sources for anti-biofilm compounds has barely been exploited. By screening for microorganisms that in agar-set pairwise interactions could antagonize Escherichia coli's ability to form macrocolony biofilms, we found that the soil bacterium Bacillus subtilis strongly inhibits the synthesis of amyloid fibers -known as curli-, which are the primary extracellular matrix (ECM) components of E. coli biofilms. We identified bacillaene, a B. subtilis hybrid non-ribosomal peptide/polyketide metabolite, previously described as a bacteriostatic antibiotic, as the effector molecule. We found that bacillaene combines both antibiotic and anti-curli functions in a concentration-dependent order that potentiates the ecological competitiveness of B. subtilis, highlighting bacillaene as a metabolite naturally optimized for microbial inhibition. Our studies revealed that bacillaene inhibits curli by directly impeding the assembly of the CsgB and CsgA curli subunits into amyloid fibers. Moreover, we found that curli inhibition occurs despite E. coli attempts to reinforce its protective ECM by inducing curli genes via a RpoS-mediated competition sensing response trigged by the threatening presence of B. subtilis. Overall, our findings illustrate the relevance of exploring microbial interactions not only for finding compounds with unknown and unique activities, but for uncovering additional functions of compounds previously categorized as antibiotics.
Assuntos
Biofilmes , Escherichia coli , Escherichia coli/fisiologia , Polienos/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismoRESUMO
Heterosis occurs when the F1s outperform their parental lines for a trait. Reciprocal hybrids are obtained by changing the cross direction of parental genotypes. Both biological phenomena could affect the external and internal attributes of fleshy fruits. This work aimed to detect reciprocal effects and heterosis in tomato (Solanum lycopersicum) fruit quality traits and metabolite content. Twelve agronomic traits and 28 metabolites identified and estimated by 1H-NMR were evaluated in five cultivars grown in two environments. Given that the genotype component was more important than the phenotype, the traits were evaluated following a full diallel mating design among those cultivars, in a greenhouse. Hybrids showed a higher phenotypic diversity than parental lines. Interestingly, the metabolites, mainly amino acids, displayed more reciprocal effects and heterosis. Agronomic traits were more influenced by general combining ability (GCA) and metabolites by specific combining ability (SCA). Furthermore, the genetic distance between parental lines was not causally related to the occurrence of reciprocal effects or heterosis. Hybrids with heterosis and a high content of metabolites linked to tomato flavour and nutritious components were obtained. Our results highlight the impact of selecting a cultivar as male or female in a cross to enhance the variability of fruit attributes through hybrids as well as the possibility to exploit heterosis for fruit composition.
Assuntos
Vigor Híbrido , Solanum lycopersicum , Cruzamentos Genéticos , Frutas/genética , Vigor Híbrido/genética , Solanum lycopersicum/genética , FenótipoRESUMO
Plants, as sessile organisms, are continuously threatened by multiple factors and therefore their profitable production depends on how they can defend themselves. We have previously reported on the characterization of fitness mutants which are more tolerant to environmental stresses due to the activation of defense mechanisms. Here, we demonstrate that in fitness mutants, which accumulate moderate levels of salicylic acid (SA) and have SA signaling activated, pathogen infection is restricted. Also, we demonstrate that NPR1 is essential in fitness mutants for SA storage and defense activation but not for SA synthesis after Pseudomonas syringae (Pst) infection. Additionally, these mutants do not appear to be metabolically impared, resulting in a higher seed set even after pathogen attack. The FITNESS transcriptional network includes defense-related transcription factors (TFs) such as ANAC072, ORA59, and ERF1 as well as jasmonic acid (JA) related genes including LIPOXYGENASE2 (LOX2), CORONATINE INSENSITIVE1 (COI1), JASMONATE ZIM-domain3 (JAZ3) and JAZ10. Induction of FITNESS expression leads to COI1 downregulation, and to JAZ3 and JAZ10 upregulation. As COI1 is an essential component of the bioactive JA perception apparatus and is required for most JA-signaling processes, elevated FITNESS expression leads to modulated JA-related responses. Taken together, FITNESS plays a crucial role during pathogen attack and allows a cost-efficient way to prevent undesirable developmental effects.
RESUMO
MAIN CONCLUSION: Soybean possesses 19 CMF genes which mainly arose from duplication events. Their features and motifs are highly conserved but transcriptional data indicated functional diversity in metabolism and stress responses. CCT [for CONSTANS, CONSTANS-like (CO-like), and timing of CAB expression1 (TOC1)] domain-containing genes play important roles in regulating flowering, plant growth, and grain yield and are also involved in stress responses. The CMF (CCT motif family) genes, included in the CCT family, contain a single CCT domain as the only identifiable domain in their predicted protein sequence and are interesting targets for breeding programs. In this study, we identified 19 putative GmCMF genes, based on the latest soybean (Glycine max) genome annotation. The predicted GmCMF proteins were characterized based on conserved structural features, and a phylogenetic tree was constructed including all CMF proteins from rice and Arabidopsis as representative examples of the monocotyledonous (monocot) and dicotyledonous (dicot) plants, respectively. High similarities in the conserved motifs of the protein sequences and the gene structures were found. In addition, by analyzing the CMF gene family in soybean, we identified seven pairs of genes that originated from segmental chromosomal duplication events attributable to the most recent whole-genome duplication (WGD) event in the Glycine lineage. Expression analysis of GmCMF genes in various tissues and after specific treatments demonstrated tissue and stress-response specific differential expression. Gene expression analysis was complemented by the identification of putative cis-elements present in the promoter regions of the genes through a bioinformatics approach, using the existing soybean reference genome sequence and gene models. Co-functional networks inferred from distinct types of genomics data-including microarrays and RNA-seq samples from soybean-revealed that GmCMF genes might play crucial roles in metabolism and transport processes. The results of this study, the first systematic analysis of the soybean CCT gene family, can serve as a strong foundation for further elucidation of their physiological functions and biological roles.
Assuntos
Genoma de Planta , Glycine max , Proteínas de Plantas , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Família Multigênica , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismoRESUMO
Environmental stresses are the major factors that limit productivity in plants. Here, we report on the function of an uncharacterized gene At1g07050, encoding a CCT domain-containing protein, from Arabidopsis thaliana. At1g07050 expression is highly repressed by oxidative stress. We used metabolomics, biochemical, and genomic approaches to analyse performance of transgenic lines with altered expression of At1g07050 under normal and oxidative stress conditions. At1g07050 overexpressing lines showed increased levels of reactive oxygen species (ROS), whereas knock-out mutants exhibited decreased levels of ROS and higher tolerance to oxidative stress generated in the chloroplast. Our results uncover a role for At1g07050 in cellular redox homeostasis controlling H2 O2 levels, due to changes in enzymes, metabolites, and transcripts related to ROS detoxification. Therefore, we call this gene FITNESS. Additionally, several genes such as ACD6, PCC1, and ICS1 related to salicylic acid signalling and defence were found differentially expressed among the lines. Notably, FITNESS absence significantly improved seed yield suggesting an effective fine-tuning trade-off between reproductive success and defence responses.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Proteínas Nucleares/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/farmacologia , Clorofila/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Imunidade Vegetal , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Prolina/metabolismo , Reprodução , Transdução de SinaisRESUMO
In sparse canopies, low red to far-red (R/FR) ratios reach only vertically-oriented stems, which respond with faster rates of extension. It is shown here that this signal also promotes stem dry matter accumulation in sunflower (Helianthus annuus) but not in mustard (Sinapis alba L.). Physically blocking internode extension growth also blocked internode recovery of labelled carbon fed to the leaves, indicating that increased carbon accumulation is partially a consequence of increased extension growth in sunflower. However, low R/FR also promoted carbon accumulation in the lower section of the internode, where extension growth was unaffected. Although the levels of many soluble metabolites and of cell-wall carbohydrates increased in the stem in response to low R/FR, allowing conservation of their concentration, sucrose was present at a lower concentration under low R/FR. This change is anticipated to favour carbon unloading from the stem phloem. Low R/FR also reduced the levels of selected fatty acids, fatty acid alcohols, and sterols. Compared with the lower section, the upper section of the internode showed higher levels of organic acids, amino acids, fatty acids, and sterols. It is concluded that the promotion of stem extension growth by low R/FR ratios causes increased dry matter gain in sunflower internodes by a mechanism that is largely independent of changes in metabolism, since, whilst both low R/FR and ontogeny alter the metabolic profile, the changes do not correlate with the observed growth responses.