Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 13(1): e0007131, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30677033

RESUMO

BACKGROUND: Leptospirosis is the most common zoonotic disease worldwide. The diagnostic performance of a serological test for human leptospirosis is mainly influenced by the antigen used in the test assay. An ideal serological test should cover all serovars of pathogenic leptospires with high sensitivity and specificity and use reagents that are relatively inexpensive to produce and can be used in tropical climates. Peptide-based tests fulfil at least the latter two requirements, and ORFeome phage display has been successfully used to identify immunogenic peptides from other pathogens. METHODOLOGY/PRINCIPAL FINDINGS: Two ORFeome phage display libraries of the entire Leptospira spp. genomes from five local strains isolated in Malaysia and seven WHO reference strains were constructed. Subsequently, 18 unique Leptospira peptides were identified in a screen using a pool of sera from patients with acute leptospirosis. Five of these were validated by titration ELISA using different pools of patient or control sera. The diagnostic performance of these five peptides was then assessed against 16 individual sera from patients with acute leptospirosis and 16 healthy donors and was compared to that of two recombinant reference proteins from L. interrogans. This analysis revealed two peptides (SIR16-D1 and SIR16-H1) from the local isolates with good accuracy for the detection of acute leptospirosis (area under the ROC curve: 0.86 and 0.78, respectively; sensitivity: 0.88 and 0.94; specificity: 0.81 and 0.69), which was close to that of the reference proteins LipL32 and Loa22 (area under the ROC curve: 0.91 and 0.80; sensitivity: 0.94 and 0.81; specificity: 0.75 and 0.75). CONCLUSIONS/SIGNIFICANCE: This analysis lends further support for using ORFeome phage display to identify pathogen-associated immunogenic peptides, and it suggests that this technique holds promise for the development of peptide-based diagnostics for leptospirosis and, possibly, of vaccines against this pathogen.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Técnicas de Visualização da Superfície Celular , Genômica/métodos , Leptospira interrogans/imunologia , Leptospirose/diagnóstico , Peptídeos/isolamento & purificação , Zoonoses/diagnóstico , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Genoma Bacteriano/genética , Humanos , Leptospira interrogans/genética , Leptospira interrogans/isolamento & purificação , Leptospirose/sangue , Leptospirose/microbiologia , Malásia , Fases de Leitura Aberta , Peptídeos/genética , Peptídeos/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Zoonoses/sangue , Zoonoses/microbiologia
2.
Methods Mol Biol ; 1701: 477-495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29116523

RESUMO

ORFeome phage display allows the efficient functional screening of entire proteomes or even metaproteomes to identify immunogenic proteins. For this purpose, randomly fragmented, whole genomes or metagenomes are cloned into a phage-display vector allowing positive selection for open reading frames (ORF) to improve the library quality. These libraries display all possible proteins encoded by a pathogen or a microbiome on the phage surface. Consequently, immunogenic proteins can be selected from these libraries using disease-related immunoglobulins from patient serum. ORFeome phage display in particular allows the identification of immunogenic proteins that are only expressed in the host-pathogen interaction but not in cultivation, as well as the detection of very low expressed and very small immunogens and immunogenic proteins of non-cultivable organisms. The identified immunogenic proteins are potential biomarkers for the development of diagnostic assays or vaccines. These articles will give an introduction to ORFeome phage-display technology and give detailed protocols to identify immunogenic proteins by phage display.


Assuntos
Clonagem Molecular/métodos , Biblioteca Gênica , Imunoglobulinas/genética , Fases de Leitura Aberta , Biblioteca de Peptídeos , Animais , Humanos
3.
MAbs ; 9(5): 831-843, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28421882

RESUMO

Human epidermal growth factor receptor 3 (HER3, also known as ErbB3) has emerged as relevant target for antibody-mediated tumor therapy. Here, we describe a novel human antibody, IgG 3-43, recognizing a unique epitope formed by domain III and parts of domain IV of the extracellular region of HER3, conserved between HER3 and mouse ErbB3. An affinity of 11 nM was determined for the monovalent interaction. In the IgG format, the antibody bound recombinant bivalent HER3 with subnanomolar affinity (KD = 220 pM) and HER3-expressing tumor cells with EC50 values in the low picomolar range (27 - 83 pM). The antibody competed with binding of heregulin to HER3-expressing cells, efficiently inhibited phosphorylation of HER3 as well as downstream signaling, and induced receptor internalization and degradation. Furthermore, IgG 3-43 inhibited heregulin-dependent proliferation of several HER3-positive cancer cell lines and heregulin-independent colony formation of HER2-overexpressing tumor cell lines. Importantly, inhibition of tumor growth and prolonged survival was demonstrated in a FaDu xenograft tumor model in SCID mice. These findings demonstrate that by binding to the membrane-proximal domains III and IV involved in ligand binding and receptor dimerization, IgG 3-43 efficiently inhibits activation of HER3, thereby blocking tumor cell growth both in vitro and in vivo.


Assuntos
Anticorpos Antineoplásicos , Epitopos/imunologia , Imunoglobulina G , Neoplasias Experimentais/tratamento farmacológico , Receptor ErbB-3/imunologia , Transdução de Sinais/efeitos dos fármacos , Anticorpos Antineoplásicos/química , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/farmacologia , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Células MCF-7 , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neuregulina-1/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Rep ; 6: 34337, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703179

RESUMO

Pathogen infections, autoimmune diseases, and chronic inflammatory disorders are associated with systemic antibody responses from the host immune system. Disease-specific antibodies can be important serum biomarkers, but the identification of antigens associated with specific immune reactions is challenging, in particular if complex communities of microorganisms are involved in the disease progression. Despite promising new diagnostic opportunities, the discovery of these serological markers becomes more difficult with increasing complexity of microbial communities. In the present work, we used a metagenomic M13 phage display approach to select immunogenic oligopeptides from the gut microbiome of transgenic mice suffering from chronic ileitis. We constructed three individual metaproteome phage display libraries with a library size of approximately 107 clones each. Using serum antibodies, we selected and validated three oligopeptides that induced specific antibody responses in the mouse model. This proof-of-concept study provides the first successful application of functional metaproteome display for the study of protein-protein interactions and the discovery of potential disease biomarkers.


Assuntos
Microbioma Gastrointestinal , Ileíte , Metagenoma , Oligopeptídeos/genética , Biblioteca de Peptídeos , Proteoma/genética , Animais , Doença Crônica , Ileíte/genética , Ileíte/metabolismo , Ileíte/microbiologia , Camundongos , Camundongos Transgênicos , Oligopeptídeos/metabolismo , Proteoma/metabolismo
5.
Adv Exp Med Biol ; 917: 23-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27236551

RESUMO

Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.


Assuntos
Anticorpos Monoclonais Humanizados/biossíntese , Anticorpos Monoclonais Humanizados/isolamento & purificação , Proteínas Recombinantes/metabolismo , Animais , Biblioteca Gênica , Humanos , Imunização , Camundongos , Biblioteca de Peptídeos , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
6.
PLoS One ; 11(2): e0148986, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26859666

RESUMO

Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.


Assuntos
Proteínas de Bactérias/imunologia , Neisseria gonorrhoeae/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/genética , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Genoma Bacteriano/genética , Gonorreia/microbiologia , Neisseria gonorrhoeae/genética , Biblioteca de Peptídeos , Coelhos/imunologia , Reação em Cadeia da Polimerase em Tempo Real
7.
BMC Biotechnol ; 15: 43, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-26024663

RESUMO

BACKGROUND: Ticks act as vectors for a large number of different pathogens, perhaps most notably Borrelia burgdorferi, the causative agent of Lyme disease. The most prominent tick vector in the United States is the blacklegged tick, Ixodes scapularis. Tick bites are of special public health concern since there are no vaccines available against most tick-transmitted pathogens. Based on the observation that certain non-natural host animals such as guinea pigs or humans can develop adaptive immune responses to tick bites, anti-tick vaccination is a potential approach to tackle health risks associated with tick bites. RESULTS: The aim of this study was to use an oligopeptide phage display strategy to identify immunogenic salivary gland proteins from I. scapularis that are recognized by human immune sera. Oligopeptide libraries were generated from salivary gland mRNA of 18 h fed nymphal I. scapularis. Eight immunogenic oligopeptides were selected using human immune sera. Three selected immunogenic oligopeptides were cloned and produced as recombinant proteins. The immunogenic character of an identified metalloprotease (MP1) was validated with human sera. This enzyme has been described previously and was hypothesized as immunogenic which was confirmed in this study. Interestingly, it also has close homologs in other Ixodes species. CONCLUSION: An immunogenic protein of I. scapularis was identified by oligopeptide phage display. MP1 is a potential candidate for vaccine development.


Assuntos
Imunoglobulina G/imunologia , Ixodes/imunologia , Metaloproteases/imunologia , Biblioteca de Peptídeos , Proteínas e Peptídeos Salivares/genética , Animais , Bacteriófago M13/genética , Humanos , Imunoglobulina G/sangue , Metaloproteases/genética , Oligopeptídeos/genética , Oligopeptídeos/imunologia , RNA Mensageiro/genética , Proteínas e Peptídeos Salivares/imunologia , Estados Unidos , Vacinação
8.
Viruses ; 5(10): 2531-45, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24136040

RESUMO

Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline.


Assuntos
Bacteriófago M13/genética , Técnicas de Visualização da Superfície Celular/métodos , Oligopeptídeos/genética , Antígenos/genética , Antígenos/isolamento & purificação , Bacteriófago lambda/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...