Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630539

RESUMO

In Europe, pine forests are one of the most extended forests formations, making pine residues and by-products an important source of compounds with high industrial interest as well as for bioenergy production. Moreover, the valorization of lumber industry residues is desirable from a circular economy perspective. Different extraction methods and solvents have been used, resulting in extracts with different constituents and consequently with different bioactivities. Recently, emerging and green technologies as ultrasounds, microwaves, supercritical fluids, pressurized liquids, and electric fields have appeared as promising tools for bioactive compounds extraction in alignment with the Green Chemistry principles. Pine extracts have attracted the researchers' attention because of the positive bioproperties, such as anti-inflammatory, antimicrobial, anti-neurodegenerative, antitumoral, cardioprotective, etc., and potential industrial applications as functional foods, food additives as preservatives, nutraceuticals, pharmaceuticals, and cosmetics. Phenolic compounds are responsible for many of these bioactivities. However, there is not much information in the literature about the individual phenolic compounds of extracts from the pine species. The present review is about the reutilization of residues and by-products from the pine species, using ecofriendly technologies to obtain added-value bioactive compounds for industrial applications.


Assuntos
Produtos Biológicos/metabolismo , Alimento Funcional , Química Verde , Valor Nutritivo , Fenóis/metabolismo , Pinus/química , Extratos Vegetais/metabolismo , Produtos Biológicos/isolamento & purificação , Suplementos Nutricionais , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Solventes/química
2.
Bioresour Technol ; 263: 112-119, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29734065

RESUMO

The production of tequila in Mexico generates a large amount of agave bagasse per year. However, this biomass can be considered as a potential source for biofuel production. In this study, it is described how the hydrothermal pretreatment was scaled in a bench scale, considering the severity index as a strategy. The best condition was at 180 °C in isothermal regime for 20 min with 65.87% of cellulose content and high concentration of xylooligosaccharides (15.31 g/L). This condition was scaled up (using severity factor: [logR0] = 4.11), in order to obtain a rich pretreated solid in cellulose to perform the enzymatic hydrolysis, obtaining saccharification yields of 98.5 and 99.5% at high-solids loading (10 and 15%, respectively). The pre-saccharification and fermentation strategy was used in the bioethanol production at 10 and 15% of total pretreated solids, obtaining 38.39 and 55.02 g/L of ethanol concentration, corresponding to 90.84% and 87.56% of ethanol yield, respectively.


Assuntos
Agave , Biocombustíveis , Celulose , Etanol , Fermentação , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA