Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 17: 1178527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810764

RESUMO

Introduction: Evidence suggests that spontaneous beta band (11-35 Hz) oscillations in the basal ganglia thalamocortical (BGTC) circuit are linked to Parkinson's disease (PD) pathophysiology. Previous studies on neural responses in the motor cortex evoked by electrical stimulation in the subthalamic nucleus have suggested that circuit resonance may underlie the generation of spontaneous and stimulation-evoked beta oscillations in PD. Whether these stimulation-evoked, resonant oscillations are present across PD patients in the internal segment of the globus pallidus (GPi), a primary output nucleus in the BGTC circuit, is yet to be determined. Methods: We characterized spontaneous and stimulation-evoked local field potentials (LFPs) in the GPi of four PD patients (five hemispheres) using deep brain stimulation (DBS) leads externalized after DBS implantation surgery. Results: Our analyses show that low-frequency (2-4 Hz) stimulation in the GPi evoked long-latency (>50 ms) beta-band neural responses in the GPi in 4/5 hemispheres. We demonstrated that neural sources generating both stimulation-evoked and spontaneous beta oscillations were correlated in their frequency content and spatial localization. Discussion: Our results support the hypothesis that the same neuronal population and resonance phenomenon in the BGTC circuit generates both spontaneous and evoked pallidal beta oscillations. These data also support the development of closed-loop control systems that modulate the GPi spontaneous oscillations across PD patients using beta band stimulation-evoked responses.

2.
Brain Stimul ; 15(5): 1111-1119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35921960

RESUMO

Approaches to control basal ganglia neural activity in real-time are needed to clarify the causal role of 13-35 Hz ("beta band") oscillatory dynamics in the manifestation of Parkinson's disease (PD) motor signs. Here, we show that resonant beta oscillations evoked by electrical pulses with precise amplitude and timing can be used to predictably suppress or amplify spontaneous beta band activity in the internal segment of the globus pallidus (GPi) in the human. Using this approach, referred to as closed-loop evoked interference deep brain stimulation (eiDBS), we could suppress or amplify frequency-specific (16-22 Hz) neural activity in a PD patient. Our results highlight the utility of eiDBS to characterize the role of oscillatory dynamics in PD and other brain conditions, and to develop personalized neuromodulation systems.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Gânglios da Base , Estimulação Encefálica Profunda/métodos , Globo Pálido/fisiologia , Humanos , Doença de Parkinson/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...